Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization

被引:3
|
作者
Yin, Xun-Fu [1 ]
Hao, Zhi-Feng [2 ]
机构
[1] S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
fast kernel density estimation; sparse Bayesian learning; mean integrated squared error; III-posed problem; regularization; jittering; relevance vector;
D O I
10.1109/ICMLC.2008.4620689
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a novel method of obtaining very sparse representation of Kernel Distribution Function Estimation (KDFE) and Kernel Density Estimation (KDE) exploiting Sparse Bayesian Regression (SBR) technique with the aidance of regularization by jittering. SBR introduces a parameterized sparsity-inducing prior on the unknown parameters of the linear model. After reviewing the existent methodologies of fast kernel density estimation, we adapt SBR to the problem of construction of sparse KDFE and KDE. Numerical results of preliminary simulation studies on synthetic data demonstrate the effectiveness of our algorithm which can achieve sparser representation of KDE than SVM-based algorithm and can produce more precise estimate than traditional full-sample KDE algorithm.
引用
收藏
页码:1756 / +
页数:2
相关论文
共 50 条
  • [21] MANIFOLD LEARNING BASED ON KERNEL DENSITY ESTIMATION
    Kuleshov, A. P.
    Bernstein, A., V
    Yanovich, Yu A.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (02): : 327 - 338
  • [23] Fast Charging Behavior of Electric Taxi Based on Improved Kernel Density Estimation
    Tian S.
    Zeng L.-L.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (04): : 221 - 229
  • [24] FFT-based fast bandwidth selector for multivariate kernel density estimation
    Gramacki, Artur
    Gramacki, Jaroslaw
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 27 - 45
  • [25] Fast learning rate of non-sparse multiple kernel learning and optimal regularization strategies
    Suzuki, Taiji
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2141 - 2192
  • [26] Bayesian classifiers based on kernel density estimation: Flexible classifiers
    Perez, Aritz
    Larranaga, Pedro
    Inza, Inaki
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 50 (02) : 341 - 362
  • [27] A fast background model using kernel density estimation and distance transform
    Cao, Jianzhao
    Ma, Ruwei
    Michael, Oloro
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (02) : 135 - 144
  • [28] KERNEL DENSITY-ESTIMATION USING THE FAST FOURIER-TRANSFORM
    SILVERMAN, BW
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1982, 31 (01): : 93 - 99
  • [29] Fast On-Line Kernel Density Estimation for Active Object Localization
    Rhodes, Anthony D.
    Quinn, Max H.
    Mitchell, Melanie
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 454 - 462
  • [30] A Fast Foreground Object Detection Algorithm Using Kernel Density Estimation
    Li, Dawei
    Xu, Lihong
    Goodman, Erik
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 703 - +