Fe-Doped CaMnO3 for Thermochemical Heat Storage Application

被引:7
|
作者
Mastronardo, Emanuela [1 ,2 ]
Qian, Xin [2 ]
Coronado, Juan M. [3 ]
Haile, Sossina [2 ]
机构
[1] IMDEA Energy Inst, Thermochem Proc Unit, Av Ramon Sagra 3,Parque Tecnol Mostoles, Madrid 28935, Spain
[2] Northwestern Univ, Mat Sci & Engn, 2220 Campus Dr Cook Hall, Evanston, IL 60208 USA
[3] CSIC, Inst Catalisis & Petroleoquim, C Marie Curie 2, E-28049 Madrid, Spain
关键词
ENERGY; CYCLES; SYSTEMS; OXIDES; MN;
D O I
10.1063/1.5117754
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CaMnO3 oxide can be considered a promising candidate for high temperature thermochemical heat storage, since it is able to release oxygen in a wide temperature range (800-1000 degrees C) at different oxygen partial pressures (pO(2)) suitable for Concentrated Solar Power (CSP) plants. Moreover, it is composed of earth abundant, inexpensive, non-toxic elements. However, it undergoes decomposition at pO(2)<0.01 atm and at temperature above 1100 degrees C. In order to overcome this limitation and to extent the operating temperature range, in this study B-site doping with Fe was used as approach for preventing decomposition. The reaction enthalpy was measured through equilibrium non-stoichiometry curves so that the heat storage capacity could be evaluated. It was demonstrated that Fe-doping prevented CaMnO3 decomposition up to 1200 degrees C at pO(2)=0.008 thus widening the operating temperature range and the oxygen reduction extent. In addition, the heat storage capacity (Delta H (kJ/mol(ABO3))) of Fe-CaMnO3 (similar to 324 kJ/kg(ABO3)) is remarkably higher than that of the un-doped CaMnO3 (250 kJ/kg(ABO3)).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High Temperature Thermoelectric Properties of Dy-doped CaMnO3 Ceramics
    Bin Zhan
    Jinle Lan
    Yaochun Liu
    Yuanhua Lin
    Yang Shen
    Cewen Nan
    JournalofMaterialsScience&Technology, 2014, 30 (08) : 821 - 825
  • [32] Dramatic changes in the magnetic coupling mechanism for La-doped CaMnO3
    Granado, E
    Moreno, NO
    Martinho, H
    García, A
    Sanjurjo, JA
    Torriani, I
    Rettori, C
    Neumeier, JJ
    Oseroff, SB
    PHYSICAL REVIEW LETTERS, 2001, 86 (23) : 5385 - 5388
  • [33] Self-trapped magnetic polaron in electron-doped CaMnO3
    Meskine, H
    Satpathy, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (12) : 1889 - 1906
  • [34] Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials
    Liu, K. K.
    Liu, Z. Y.
    Zhang, F. P.
    Zhang, J. X.
    Yang, X. Y.
    Zhang, J. W.
    Shi, J. L.
    Ren, G.
    He, T. W.
    Duan, J. J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 808
  • [35] W-Doped CaMnO2.5 and CaMnO3 Electrocatalysts for Enhanced Performance in Oxygen Evolution and Reduction Reactions
    Kim, Jaemin
    Chen, Xuxia
    Pan, Yung-Tin
    Shih, Pei-Chieh
    Yang, Hong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : F1074 - F1080
  • [36] Ferromagnetic correlation and metallic behavior in slightly electron-doped antiferromagnetic CaMnO3
    Fan, XJ
    Koinuma, H
    Hasegawa, T
    PHYSICA B-CONDENSED MATTER, 2003, 329 : 723 - 724
  • [37] Investigation of electron and phonon transport in Bi-doped CaMnO3 for thermoelectric applications
    Suprayoga, Edi
    Putri, Witha B. K.
    Singsoog, Kunchit
    Paengson, Supasit
    Hanna, Muhammad Y.
    Nugraha, Ahmad R. T.
    Munazat, Dicky R.
    Kurniawan, Budhy
    Nurhuda, Muhammad
    Seetawan, Tosawat
    Hasdeo, Eddwi H.
    MATERIALS RESEARCH BULLETIN, 2021, 141
  • [38] Possible signatures of magnetic phase segregation in electron-doped antiferromagnetic CaMnO3
    Neumeier, JJ
    Cohn, JL
    PHYSICAL REVIEW B, 2000, 61 (21) : 14319 - 14322
  • [39] Correlation Between the Electronic Structure and the Thermoelectric Properties of Gd-Doped CaMnO3−δ
    Chia-Jyi Liu
    Wei-Cheng Wang
    J.-J. Yuan
    Jeng-Lung Chen
    Mei-Huei Wu
    Ching-Lin Chang
    Journal of Electronic Materials, 2014, 43 : 2094 - 2098
  • [40] Electron transport and mobility analysis in La/Sr co-doped CaMnO3–δ
    Ilia A. Leonidov
    Ekaterina I. Konstantinova
    Mikhail V. Patrakeev
    Andrey V. Chukin
    Victor L. Kozhevnikov
    Journal of Solid State Electrochemistry, 2017, 21 : 2099 - 2108