Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism

被引:4
|
作者
Zeng Chaoping [1 ]
Ju Lijun [1 ]
Zhang Jianchen [2 ]
机构
[1] Henan Coll Surveying & Mapping, Dept Space Informat Engn, Zhengzhou 450015, Henan, Peoples R China
[2] Henan Univ, Coll Environm & Planning, Kaifeng 175004, Henan, Peoples R China
关键词
remote sensing; image classification; clustering dimensionality reduction; visual attention mechanism; multi-scale saliency detection;
D O I
10.3788/LOP56.212802
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-scale saliency detection-based visual attention mechanism is introduced to eliminate noise and enhance the quality of the hyperspectral images. Further, a hyperspectral image classification method is proposed by combining the clustering dimensionality reduction and visual attention mechanism in accordance with the hierarchical clustering algorithm. Subsequently, dimensionality reduction, acquisition of saliency mapping, and support-vectormachine-supervised classification experiments arc conducted by considering the Indian and Pavia datasets as examples. The results denote that the proposed method can considerably improve the classification accuracy and efficiency of hyperspectral images.
引用
收藏
页数:7
相关论文
共 21 条
  • [11] Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data
    Mananze, Sosdito
    Pocas, Isabel
    Cunha, Mario
    [J]. REMOTE SENSING, 2018, 10 (12)
  • [12] Martinez-Usomartinez-Uso A, 2007, IEEE T GEOSCI REMOTE, V15, P1158
  • [13] Limitations of Principal Components Analysis for Hyperspectral Target Recognition
    Prasad, Saurabh
    Bruce, Lori Mann
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 625 - 629
  • [14] Ren Z W, 2018, LASER OPTOELECTRON P, V55
  • [15] Shen XH, 2012, PROC CVPR IEEE, P853, DOI 10.1109/CVPR.2012.6247758
  • [16] Hierarchical Image Saliency Detection on Extended CSSD
    Shi, Jianping
    Yan, Qiong
    Xu, Li
    Jia, Jiaya
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (04) : 717 - 729
  • [17] Unsupervised Band Selection by Integrating the Overall Accuracy and Redundancy
    Sui, Chenhong
    Tian, Yan
    Xu, Yiping
    Xie, Yong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (01) : 185 - 189
  • [18] Matrix-Based Margin-Maximization Band Selection With Data-Driven Diversity for Hyperspectral Image Classification
    Wei, Xiaohui
    Zhu, Wen
    Liao, Bo
    Cai, Lijun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7294 - 7309
  • [19] Hyperspectral image target detection via integrated background suppression with adaptive weight selection
    Wu, Ke
    Xu, Guang
    Zhang, Yuxiang
    Du, Bo
    [J]. NEUROCOMPUTING, 2018, 315 : 59 - 67
  • [20] Trainable spectral difference learning with spatial starting for hyperspectral image denoising
    Xie, Weiying
    Li, Yunsong
    Hu, Jing
    Chen, Duan-Yu
    [J]. NEURAL NETWORKS, 2018, 108 : 272 - 286