A parallel iterative solver based on the Schur complement system

被引:0
|
作者
Larrazábal, G [1 ]
Cela, JM [1 ]
机构
[1] Univ Carabobo, FACYT, Dept Computac, Valencia, Venezuela
关键词
D O I
10.1109/ICPPW.2001.951921
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a parallel iterative solver for the Schur system. We have developed two preconditioners for this system. The preconditioners are based in a strongly dropped factorisation and algebraic multigrid technique, respectively. Two levels of parallelism are exploited using PVM and openMP. The preconditioners are tested with a scalar convection-diffusion equation, a set of industrial test cases arising from the finite element package PERMAS and the Davis collection. We have obtained quasi-linear speed-up until 32 processors.
引用
收藏
页码:149 / 154
页数:4
相关论文
共 50 条
  • [31] Application of the iterative solution method with Schur complement reduction to mixed finite elements based in a tetrahedral discretization
    Naff, Richard L.
    ADVANCES IN WATER RESOURCES, 2014, 65 : 9 - 17
  • [32] Power System Dynamic Simulations Using a Parallel Two-Level Schur-Complement Decomposition
    Aristidou, Petros
    Lebeau, Simon
    Van Cutsem, Thierry
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 3984 - 3995
  • [33] PHIST A Pipelined, Hybrid-Parallel Iterative Solver Toolkit
    Thies, Jonas
    Roehrig-Zoellner, Melven
    Overmars, Nigel
    Basermann, Achim
    Ernst, Dominik
    Hager, Georg
    Wellein, Gerhard
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2020, 46 (04):
  • [34] The parareal in time iterative solver: a further direction to parallel implementation
    Maday, Y
    Turinici, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 441 - 448
  • [35] Performance evaluation of CGS parallel iterative solver with BILU preconditioning
    Zunic, Z
    Skerget, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S665 - S666
  • [36] Parallel segregated Schur complement methods for fluid density functional theories
    Heroux, Michael A.
    Salinger, Andrew G.
    Frink, Laura J. D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05): : 2059 - 2077
  • [37] A nested Schur complement solver with mesh-independent convergence for the time domain photonics modeling
    Botchev, M. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (02) : 295 - 304
  • [38] Parallel Newton-Krylov-Schur Flow Solver for the Navier-Stokes Equations
    Osusky, Michal
    Zingg, David W.
    AIAA JOURNAL, 2013, 51 (12) : 2833 - 2851
  • [40] PARALLEL LINEAR-SYSTEM SOLVER
    EVANS, DJ
    HATZOPOULOS, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1979, 7 (03) : 227 - 238