Uniform decay rate estimates for Schrodinger and plate equations with nonlinear locally distributed damping

被引:33
|
作者
Bortot, C. A. [1 ]
Cavalcanti, M. M. [1 ]
Correa, W. J. [2 ]
Domingos Cavalcanti, V. N. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Tecnol Fed Parana, BR-87301006 Apucarana, Parana, Brazil
关键词
GLOBAL UNIQUENESS; EXACT CONTROLLABILITY; ASYMPTOTIC STABILITY; COMPACT MANIFOLDS; WAVE-EQUATION; STABILIZATION; OBSERVABILITY; ENERGY;
D O I
10.1016/j.jde.2013.01.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a compact n-dimensional Riemannian manifold (M, g), we establish uniform decay rate estimates for the linear Schrodinger and plate equations subject to an internal nonlinear damping locally distributed on the manifold. Our approach can be also employed for other equations provided that inverse inequality for the linear model occurs. In the particular case of the wave equation, where the well-known geometric control condition (GCC) is equivalent to the observability inequality, our method generalizes the results due to Cavalcanti et al. (2010, 2009) [9,10] regarding the optimal choice of dissipative regions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3729 / 3764
页数:36
相关论文
共 50 条
  • [1] Uniform decay rate estimates for the beam equation with locally distributed nonlinear damping
    Cavalcanti, Marcelo M.
    Delatorre, Leonel G.
    Domingos Cavalcanti, Valeria N.
    Gonzalez Martinez, Victor H.
    Soares, Daiane C.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10281 - 10303
  • [2] Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Fukuoka, Ryuichi
    Pampu, Ademir B.
    Astudillo, Maria
    [J]. NONLINEARITY, 2018, 31 (09) : 4031 - 4064
  • [3] Uniform decay for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping
    Bisognin, V.
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Soriano, J.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 91 - 113
  • [4] Uniform decay rate estimates for the coupled semilinear wave system in inhomogeneous media with locally distributed nonlinear damping
    Almeida, A. F.
    Cavalcanti, M. M.
    Gonzalez, R. B.
    Gonzalez Martinez, V. H.
    Zanchetta, J. P.
    [J]. ASYMPTOTIC ANALYSIS, 2020, 117 (1-2) : 67 - 111
  • [5] General decay rate estimates and numerical analysis for a transmission problem with locally distributed nonlinear damping
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Rosier, Carole
    Dias Silva, Flavio R.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (10) : 2293 - 2318
  • [6] Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
    Domingos Cavalcanti, Andre D.
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Hajjej, Zayd
    Sepulveda Cortes, Mauricio
    Vejar Asem, Rodrigo
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (04): : 2388 - 2419
  • [7] DECAY ESTIMATES FOR NONLINEAR SCHRODINGER EQUATIONS
    Fan, Chenjie
    Zhao, Zehua
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (08) : 3973 - 3984
  • [8] EXPONENTIAL DECAY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING
    Almeida, A. F.
    Cavalcanti, M. M.
    Zanchetta, J. P.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2039 - 2061
  • [9] Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
    V. Bisognin
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    J. Soriano
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 91 - 113
  • [10] Exponential stability for the nonlinear Schrodinger equation with locally distributed damping
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Ozsari, Turker
    Sepulveda, Mauricio
    Vejar-Aseme, Rodrigo
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (09) : 1134 - 1167