Model selection and Bayesian inference for high-resolution seabed reflection inversion

被引:63
|
作者
Dettmer, Jan [1 ]
Dosso, Stan E. [1 ]
Holland, Charles W. [2 ]
机构
[1] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC V8W 3P6, Canada
[2] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA
来源
关键词
OCEAN ACOUSTIC INVERSION; GEOACOUSTIC INVERSION; UNCERTAINTY ESTIMATION; MARGINAL LIKELIHOOD; GIBBS SAMPLER; COMPUTATION; FREQUENCY; TIME;
D O I
10.1121/1.3056553
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis-Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3056553]
引用
收藏
页码:706 / 716
页数:11
相关论文
共 50 条
  • [21] Bayesian algorithm for high-resolution DOA estimation
    Zhang, Yin
    Huang, Yulin
    Yang, Jianyu
    ELECTRONICS LETTERS, 2015, 51 (21) : 1701 - U106
  • [22] Bayesian high-resolution technique for estimation of DOA
    Xu, P.
    Huang, J.G.
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2001, 16 (02):
  • [23] High-Resolution Fast-Rotating Sound Localization Based on Modal Composition Beamforming and Bayesian Inversion
    Chu, Ning
    Hu, Keyu
    Yu, Liang
    Mohammad-Djafari, Ali
    Yang, Weihua
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 353 - 353
  • [24] Hierarchical Block Structures and High-Resolution Model Selection in Large Networks
    Peixoto, Tiago P.
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [25] Improving seabed substrate mapping with high-resolution bottom trawl data
    van der Reijden, K. J.
    Ernstsen, V. B.
    Olsen, J.
    Dinesen, G. E.
    Leth, J. O.
    Eigaard, O. R.
    MARINE ENVIRONMENTAL RESEARCH, 2023, 186
  • [26] High-resolution near-seabed velocity and sediment transport profiling
    vanUnen, RF
    vanRuiten, KJM
    Bosman, JJ
    OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 483 - 488
  • [27] MetaNetter: inference and visualization of high-resolution metabolomic networks
    Jourdan, Fabien
    Breitling, Rainer
    Barrett, Michael P.
    Gilbert, David
    BIOINFORMATICS, 2008, 24 (01) : 143 - 145
  • [28] HIGH-RESOLUTION INVERSION OF THE DISCRETE POISSON AND BINOMIAL TRANSFORMATIONS
    BYRNE, C
    HAUGHTON, D
    JIANG, T
    INVERSE PROBLEMS, 1993, 9 (01) : 39 - 56
  • [29] A Boltzmann machine for high-resolution prestack seismic inversion
    Son Dang Thai Phan
    Sen, Mrinal K.
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE215 - SE224
  • [30] High-resolution fixed-point seismic inversion
    Pei, Song
    Yin, Xingyao
    Zong, Zhaoyun
    Li, Kun
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2021, 9 (03): : B25 - B37