Model selection and Bayesian inference for high-resolution seabed reflection inversion

被引:63
|
作者
Dettmer, Jan [1 ]
Dosso, Stan E. [1 ]
Holland, Charles W. [2 ]
机构
[1] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC V8W 3P6, Canada
[2] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA
来源
关键词
OCEAN ACOUSTIC INVERSION; GEOACOUSTIC INVERSION; UNCERTAINTY ESTIMATION; MARGINAL LIKELIHOOD; GIBBS SAMPLER; COMPUTATION; FREQUENCY; TIME;
D O I
10.1121/1.3056553
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis-Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3056553]
引用
收藏
页码:706 / 716
页数:11
相关论文
共 50 条
  • [1] Bayesian inversion of seabed reflection data
    Dosso, Stan. E.
    Holland, Charles. W.
    ACOUSTIC SENSING TECHNIQUES FOR THE SHALLOW WATER ENVIRONMENT: INVERSION METHODS AND EXPERIMENTS, 2006, : 17 - +
  • [2] Analyzing lateral seabed variability with Bayesian inference of seabed reflection data
    Dettmer, Jan
    Holland, Charles W.
    Dosso, Stan E.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 126 (01): : 56 - 69
  • [3] High-resolution Bayesian sequential stochastic inversion
    Li Q.
    Luo Y.
    Zhang S.
    Zhang L.
    Yang Y.
    Huang H.
    Li, Qixin (liqx13@cnooc.com.cn), 1600, Science Press (55): : 389 - 397
  • [4] Spatially varying SAR models and Bayesian inference for high-resolution lattice data
    Chiranjit Mukherjee
    Prasad S. Kasibhatla
    Mike West
    Annals of the Institute of Statistical Mathematics, 2014, 66 : 473 - 494
  • [5] HIGH-RESOLUTION SEABED MAPPING - NEW DEVELOPMENTS
    KLEIN, M
    ISA TRANSACTIONS, 1985, 24 (03) : 65 - 73
  • [6] HIGH-RESOLUTION REFLECTIVITY INVERSION
    Nguyen, Thang
    Castagna, John
    JOURNAL OF SEISMIC EXPLORATION, 2010, 19 (04): : 303 - 320
  • [7] Spatially varying SAR models and Bayesian inference for high-resolution lattice data
    Mukherjee, Chiranjit
    Kasibhatla, Prasad S.
    West, Mike
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (03) : 473 - 494
  • [8] Bayesian inference in a sample selection model
    van Hasselt, Martijn
    JOURNAL OF ECONOMETRICS, 2011, 165 (02) : 221 - 232
  • [9] High-Resolution Bayesian Inversion of Carbon Dioxide Flux Over Peninsular India
    Sijikumar, S.
    Raju, Anjumol
    Valsala, Vinu
    Tiwari, Yogesh
    Girach, I. A.
    Jain, Chaithanya D.
    Ratnam, M. Venkat
    ATMOSPHERIC ENVIRONMENT, 2023, 308
  • [10] Estimating seabed scattering mechanisms via Bayesian model selection
    Steininger, Gavin
    Dosso, Stan E.
    Holland, Charles W.
    Dettmer, Jan
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (04): : 1552 - 1562