Comment on "Quantification of glycated hemoglobin and glucose in vivo using Raman spectroscopy and artificial neural networks"

被引:6
|
作者
Bratchenko, Ivan A. [1 ]
Bratchenko, Lyudmila A. [1 ]
机构
[1] Samara Natl Res Univ, Laser & Biotech Syst Dept, Moskovskoe Shosse 34, Samara 443086, Russia
关键词
D O I
10.1007/s10103-022-03650-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
引用
收藏
页码:3753 / 3754
页数:2
相关论文
共 50 条
  • [41] Analysis of human brain NMR spectra in vivo using artificial neural networks
    Saudek, Erik
    Novak, Daniel
    Wagnerova, Dita
    Hajek, Milan
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 517 - +
  • [42] Evaluation of an in vitro in vivo correlation for nebulizer delivery using artificial neural networks
    de Matas, Marcel
    Shao, Qun
    Silkstone, Victoria Louise
    Chrystyn, Henry
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2007, 96 (12) : 3293 - 3303
  • [43] Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks
    Conesa, Claudia
    Sanchez, Luis Gil
    Segui, Lucia
    Fito, Pedro
    Laguarda-Miro, Nicolas
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 161 : 1 - 7
  • [44] Bridge Damage Severity Quantification Using Multipoint Acceleration Measurement and Artificial Neural Networks
    Chun, Pang-jo
    Yamashita, Hiroaki
    Furukawa, Seiji
    SHOCK AND VIBRATION, 2015, 2015
  • [45] Identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks
    Dziuba, B.
    Babuchowski, A.
    Dziuba, M.
    Nalecz, D.
    MILCHWISSENSCHAFT-MILK SCIENCE INTERNATIONAL, 2007, 62 (01): : 28 - 32
  • [46] Surface-Enhanced Raman Spectroscopy and Artificial Neural Networks for Detection of MXene Flakes' Surface Terminations
    Trelin, Andrii
    Skvortsova, Anastasiia
    Olshtrem, Anastasia
    Chertopalov, Sergii
    Mares, David
    Lapcak, Ladislav
    Vondracek, Martin
    Sajdl, Petr
    Jerabek, Vitezslav
    Maixner, Jaroslav
    Lancok, Jan
    Sofer, Zdenek
    Regner, Jakub
    Kolska, Zdenka
    Svorcik, Vaclav
    Lyutakov, Oleksiy
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (16): : 6780 - 6787
  • [47] Hybrid use of Raman spectroscopy and artificial neural networks to discriminate Mycobacterium bovis BCG and other Mycobacteriales
    Macgregor-Fairlie, Michael
    De Gomes, Paulo
    Weston, Daniel
    Rickard, Jonathan James Stanley
    Oppenheimer, Pola Goldberg
    PLOS ONE, 2023, 18 (12):
  • [48] Characterization of Artificial Sweeteners Using Raman Spectroscopy
    Ciaccheri, L.
    Mignani, A. G.
    Mencaglia, A. A.
    Petruccelli, R.
    SENSORS, 2015, 319 : 229 - 233
  • [49] Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy
    Huang, Yu-Long
    Lin, Yi-Ru
    Tsai, Shang-Yueh
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (03) : 477 - 489
  • [50] Anti-glycated activity prediction of polysaccharides from two guava fruits using artificial neural networks
    Yan, Chunyan
    Lee, Jinsheng
    Kong, Fansheng
    Zhang, Dezhi
    CARBOHYDRATE POLYMERS, 2013, 98 (01) : 116 - 121