SO0(1, d+1) Racah coefficients:: Type I representations

被引:8
|
作者
Krasnov, K [1 ]
Louko, J
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2180626
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use AdS/CFT inspired methods to study the Racah coefficients for type I representations of the Lorentz group SO0(1,d+1) with d > 1. For such representations (a multiple of) the Racah coefficient can be represented as an integral of a product of six bulk-to-bulk propagators over four copies of the hyperbolic space Hd+1. To compute the integrals we represent the bulk-to-bulk propagators in terms of bulk-to-boundary ones. The bulk integrals can be computed explicitly, and the boundary integrations are carried out by introducing Feynman parameters. The final result is an integral representation of the Racah coefficient given by four Barnes-Mellin type integrals. (c) 2006 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Parameterized post-Newtonian coefficients for Brans-Dicke gravity with d+1 dimensions
    Klimek, Matthew D.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (06)
  • [42] Geometric parametrization of SO(D+1) phase space of all dimensional loop quantum gravity
    Long, Gaoping
    Lin, Chun-Yen
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [43] Locally isometric coverings of the Lie group SO0(2,1) with special sub-Riemannian metric
    Berestovskii, V. N.
    Zubareva, I. A.
    SBORNIK MATHEMATICS, 2016, 207 (09) : 1215 - 1235
  • [44] (LOCALLY) SHORTEST ARCS OF A SPECIAL SUB-RIEMANNIAN METRIC ON THE LIE GROUP SO0(2,1)
    Berestovskii, V. N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (01) : 1 - 14
  • [45] Coupling coefficients of suq(1,1) and multivariate q-Racah polynomials
    Genest, Vincent X.
    Iliev, Plamen
    Vinet, Luc
    NUCLEAR PHYSICS B, 2018, 927 : 97 - 123
  • [46] Reconciling d+1 Masking in Hardware and Software
    Gross, Hannes
    Mangard, Stefan
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2017, 2017, 10529 : 115 - 136
  • [47] Masking AES with d+1 Shares in Hardware
    De Cnudde, Thomas
    Reparaz, Oscar
    Bilgin, Beguel
    Nikova, Svetla
    Nikov, Ventzislav
    Rijmen, Vincent
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2016, 2016, 9813 : 194 - 212
  • [48] Masking AES With d+1 Shares in Hardware
    De Cnudde, Thomas
    Reparaz, Oscar
    Bilgin, Begul
    Nikova, Svetla
    Nikov, Ventzislav
    Rijmen, Vincent
    PROCEEDINGS OF THE 2016 ACM WORKSHOP ON THE THEORY OF IMPLEMENTATION SECURITY (TIS'16), 2016, : 43 - 43
  • [49] Vacuum polarization in d+1/2 dimensions
    Fosco, CD
    Malbouisson, APC
    Roditi, I
    PHYSICS LETTERS B, 2005, 609 (3-4) : 430 - 436
  • [50] Random hyperbolic graphs in d+1 dimensions
    Budel, Gabriel
    Kitsak, Maksim
    Aldecoa, Rodrigo
    Zuev, Konstantin
    Krioukov, Dmitri
    PHYSICAL REVIEW E, 2024, 109 (05)