The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity

被引:17
|
作者
Tang, Wai-Kwan [1 ]
Wong, Kam-Bo [1 ,2 ]
Lam, Yuk-Man [1 ]
Cha, Sun-Shin [3 ]
Cheng, Christopher H. K. [1 ,2 ]
Fong, Wing-Ping [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Biochem, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Ctr Prot Sci & Crystallog, Hong Kong, Hong Kong, Peoples R China
[3] Korea Ocean Res & Dev Inst, Marine Biotechnol & New Mat Res Div, Ansan, South Korea
关键词
antiquitin; ALDH7; alpha-aminoadipic semialdehyde; x-ray crystallography; site-directed mutagenesis; pyridoxine-dependent epilepsy;
D O I
10.1016/j.febslet.2008.07.059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8 angstrom resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specificity interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:3090 / 3096
页数:7
相关论文
共 50 条
  • [31] Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity
    Takahide Kouno
    Tania V. Silvas
    Brendan J. Hilbert
    Shivender M. D. Shandilya
    Markus F. Bohn
    Brian A. Kelch
    William E. Royer
    Mohan Somasundaran
    Nese Kurt Yilmaz
    Hiroshi Matsuo
    Celia A. Schiffer
    Nature Communications, 8
  • [32] Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity
    Kouno, Takahide
    Silvas, Tania V.
    Hilbert, Brendan J.
    Shandilya, Shivender M. D.
    Bohn, Markus F.
    Kelch, Brian A.
    Royer, William E.
    Somasundaran, Mohan
    Yilmaz, Nese Kurt
    Matsuo, Hiroshi
    Schiffer, Celia A.
    NATURE COMMUNICATIONS, 2017, 8
  • [33] Structural basis for the catalysis and substrate specificity of homoserine kinase
    Krishna, SS
    Zhou, T
    Daugherty, M
    Osterman, A
    Zhang, H
    BIOCHEMISTRY, 2001, 40 (36) : 10810 - 10818
  • [34] STRUCTURAL BASIS OF SUBSTRATE-SPECIFICITY IN THE SERINE PROTEASES
    PERONA, JJ
    CRAIK, CS
    PROTEIN SCIENCE, 1995, 4 (03) : 337 - 360
  • [35] Structural basis of substrate specificity in porcine RNase 4
    Liang, Shutian
    Acharya, K. Ravi
    FEBS JOURNAL, 2016, 283 (05) : 912 - 928
  • [36] The structural basis for catalysis and substrate specificity of a rhomboid protease
    Vinothkumar, Kutti R.
    Strisovsky, Kvido
    Andreeva, Antonina
    Christova, Yonka
    Verhelst, Steven
    Freeman, Matthew
    EMBO JOURNAL, 2010, 29 (22): : 3797 - 3809
  • [37] Structural basis of the substrate specificity of human and bacterial kynureninase
    Phillips, R. S.
    FEBS JOURNAL, 2013, 280 : 171 - 172
  • [38] STRUCTURAL BASIS FOR THE SUBSTRATE SPECIFICITY OF PROTEIN TYROSINE PHOSPHATASES
    Yang, J.
    Cheng, Z.
    Niu, T.
    Liang, X.
    Zhou, G. W.
    Zhao, Z. J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 361 - 361
  • [39] Structural basis for substrate specificity of the human mitochondrial deoxyribonucleotidase
    Walldén, K
    Ruzzenente, B
    Rinaldo-Matthis, A
    Bianchi, V
    Nordlund, P
    STRUCTURE, 2005, 13 (07) : 1081 - 1088
  • [40] Structural basis of substrate specificity in malate dehydrogenases:: Crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, α-ketomalonate and tetrahydoNAD
    Chapman, ADM
    Cortés, A
    Dafforn, TR
    Clarke, AR
    Brady, RL
    JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (02) : 703 - 712