Hermitian and non-Hermitian shortcuts to adiabaticity for fast creation of maximum coherence and beam splitting

被引:3
|
作者
Tang, Kai [1 ,2 ,3 ,4 ]
Hu, Zhengfeng [5 ,6 ]
Chen, Xi [1 ,2 ,7 ]
Liu, Chengpu [3 ,4 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
[4] Chinese Acad Sci, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
[6] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[7] Univ Basque Country, Dept Phys Chem, Bilbao 48080, Spain
关键词
Shortcuts to adiabaticity; Non-Hermitian; Beam splitting; INDUCED POPULATION TRANSFER; PASSAGE;
D O I
10.1186/s41476-020-00139-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically exploit the shortcuts to adiabaticity (STA) technique in Hermitian and non-Hermitian quantum systems to realize the maximum coherence and beam splitting by eliminating the nonadiabatic coupling. Compared with the conventional adiabatic passage (AP) technique with the Gaussian and Allen-Eberly schemes, the operation time can be significantly shortened by three order using STA technique. This STA-based fast creation of maximum coherence or beam splitting are in use ranging from quantum sensing and metrology in a noisy environment to optical gain/loss coupled waveguides in an analogous fashion.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Beam Splitting via Non-Hermitian Stimulated Raman Shortcut to Adiabatic Passage
    Tang Kai
    Hu Zhengfeng
    Liu Chengpu
    Chen Xi
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (09):
  • [22] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    RESEARCH, 2021, 2021
  • [23] Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices
    Bai, Zhong-Zhi
    Golub, Gene H.
    Li, Chi-Kwong
    MATHEMATICS OF COMPUTATION, 2006, 76 (257) : 287 - 298
  • [24] A note on the modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems
    School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
    WSEAS Trans. Math., 2008, 5 (323-332): : 323 - 332
  • [25] New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems
    Hossein Noormohammadi Pour
    Hossein Sadeghi Goughery
    Numerical Algorithms, 2015, 69 : 207 - 225
  • [26] Hermitian and non-Hermitian normal-mode splitting in an optically-levitated nanoparticle
    Xudong Yu
    Yuanbin Jin
    Heng Shen
    Zheng Han
    Jing Zhang
    Quantum Frontiers, 1 (1):
  • [27] New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems
    Pour, Hossein Noormohammadi
    Goughery, Hossein Sadeghi
    NUMERICAL ALGORITHMS, 2015, 69 (01) : 207 - 225
  • [28] Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems
    Li, Liang
    Huang, Ting-Zhu
    Liu, Xing-Ping
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (03) : 217 - 235
  • [29] A generalization of the local Hermitian and skew-Hermitian splitting iteration methods for the non-Hermitian saddle point problems
    Zhu, Mu-Zheng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8816 - 8824
  • [30] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    SYMMETRY-BASEL, 2022, 14 (09):