Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations

被引:13
|
作者
Oh, Chamteut [1 ]
Zhou, Aijia [1 ]
O'Brien, Kate [2 ]
Jamal, Yusuf [3 ]
Wennerdahl, Hayden [5 ]
Schmidt, Arthur R. [1 ]
Shisler, Joanna L. [4 ]
Jutla, Antarpreet [3 ]
Schmidt, Arthur R. [1 ]
Keefer, Laura [5 ]
Brown, William M. [6 ]
Nguyen, Thanh H. [1 ,7 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Champaign, IL 61820 USA
[2] Univ Illinois, Sch Integrat Biol, Champaign, IL USA
[3] Univ Florida, Dept Environm Engn Sci, Gainesville, FL 32611 USA
[4] Univ Illinois, Dept Microbiol, Champaign, IL USA
[5] Univ Illinois, Prairie Res Inst, Illinois State Water Survey, Champaign, IL USA
[6] Univ Illinois, Coll Vet Med, Dept Pathobiol, Champaign, IL USA
[7] Univ Illinois, Inst Genom Biol, Champaign, IL USA
关键词
Wastewater-based epidemiology; Neighborhood-scale sewersheds; SARS-CoV-2 variant-specific RT-qPCR assays; Low COVID-19 incidence; TIME;
D O I
10.1016/j.scitotenv.2022.158448
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wastewater-based epidemiology (WBE), an emerging approach for community-wide COVID-19 surveillance, was primarily characterized at large sewersheds such as wastewater treatment plants serving a large population. Although informed public health measures can be better implemented for a small population, WBE for neighborhood-scale sewersheds is less studied and not fully understood. This study applied WBE to seven neighborhood-scale sewersheds (average population of 1471) fromJanuary to November 2021. Community testing data showed an average of 0.004% incidence rate in these sewersheds (97% ofmonitoring periods reported two or fewer daily infections). In 92% of sewage samples, SARS-CoV-2 N gene fragments were below the limit of quantification. We statistically determined 10(-2.6) as the threshold of the SARS-CoV-2 N gene concentration normalized to pepper mild mottle virus (N/PMMOV) to alert high COVID-19 incidence rate in the studied sewershed. This threshold of N/PMMOV identified neighborhood-scale outbreaks (COVID-19 incidence rate higher than 0.2 %) with 82 % sensitivity and 51 % specificity. Importantly, neighborhood-scale WBE can discern local outbreaks that would not otherwise be identified by city-scale WBE. Our findings suggest that neighborhood-scale WBE is an effective community-wide disease surveillance tool when COVID-19 incidence is maintained at a low level.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] COVID-19 Surveillance Wastewater-based epidemiology
    Mullasseri, Sileesh
    CURRENT SCIENCE, 2021, 120 (11): : 1660 - 1660
  • [2] Wastewater-Based Epidemiology for Managing the COVID-19 Pandemic
    Fuschi, Claire
    Pu, Haihui
    Negri, Maria
    Colwell, Rita
    Chen, Junhong
    ACS ES&T WATER, 2021, 1 (06): : 1352 - 1362
  • [3] Application of wastewater-based epidemiology for monitoring COVID-19 in hospital and housing wastewaters
    Tandukar, Sarmila
    Thakali, Ocean
    Baral, Rakshya
    Tiwari, Ananda
    Haramoto, Eiji
    Tuladhar, Reshma
    Joshi, Dev Raj
    Sherchan, Samendra P.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 931
  • [4] Evaluating survey techniques in wastewater-based epidemiology for accurate COVID-19 incidence estimation
    Murakami, Michio
    Ando, Hiroki
    Yamaguchi, Ryo
    Kitajima, Masaaki
    Science of the Total Environment, 2024, 954
  • [5] A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal
    Monteiro, Silvia
    Rente, Daniela
    Cunha, Monica, V
    Gomes, Manuel Carmo
    Marques, Tiago A.
    Lourenco, Artur B.
    Cardoso, Eugenia
    Alvaro, Pedro
    Silva, Marco
    Coelho, Norberta
    Vilaca, Joao
    Meireles, Fatima
    Broco, Nuno
    Carvalho, Marta
    Santos, Ricardo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [6] Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey
    Chen, Chen
    Wang, Yunfan
    Kaur, Gursharn
    Adiga, Aniruddha
    Espinoza, Baltazar
    Venkatramanan, Srinivasan
    Warren, Andrew
    Lewis, Bryan
    Crow, Justin
    Singh, Rekha
    Lorentz, Alexandra
    Toney, Denise
    Marathe, Madhav
    EPIDEMICS, 2024, 49
  • [7] Integrating socio-economic vulnerability factors improves neighborhood-scale wastewater-based epidemiology for public health applications
    Saingam, Prakit
    Jain, Tanisha
    Woicik, Addie
    Li, Bo
    Candry, Pieter
    Redcorn, Raymond
    Wang, Sheng
    Himmelfarb, Jonathan
    Bryan, Andrew
    Winkler, Mari K. H.
    Gattuso, Meghan
    WATER RESEARCH, 2024, 254
  • [8] COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology
    Gonzalez, Raul
    Curtis, Kyle
    Bivins, Aaron
    Bibby, Kyle
    Weir, Mark H.
    Yetka, Kathleen
    Thompson, Hannah
    Keeling, David
    Mitchell, Jamie
    Gonzalez, Dana
    WATER RESEARCH, 2020, 186
  • [9] How has the COVID-19 pandemic impacted wastewater-based epidemiology?
    Barcellos, Demian S.
    Barquilha, Carlos E. R.
    Oliveira, Pamela E.
    Prokopiuk, Mario
    Etchepare, Ramiro G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 892
  • [10] A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19
    Rainey, Andrew
    Liang, Song T.
    Bisesi Jr, Joseph H.
    Sabo-Attwood, Tara
    Maurelli, Anthony
    PLOS ONE, 2023, 18 (04):