COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology

被引:328
|
作者
Gonzalez, Raul [1 ]
Curtis, Kyle [1 ]
Bivins, Aaron [2 ]
Bibby, Kyle [2 ]
Weir, Mark H. [3 ]
Yetka, Kathleen [1 ]
Thompson, Hannah [1 ]
Keeling, David [1 ]
Mitchell, Jamie [1 ]
Gonzalez, Dana [1 ]
机构
[1] Hampton Roads Sanitat Dist, 1434 Air Rail Ave, Virginia Beach, VA 23455 USA
[2] Univ Notre Dame, Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA
[3] Ohio State Univ, Div Environm Hlth Sci, Coll Publ Hlth, 1841 Neil Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Wastewater-based epidemiology; COVID-19; SARS-CoV-2; RT-ddPCR; VIRUSES;
D O I
10.1016/j.watres.2020.116296
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wastewater-based epidemiology (WBE) has been used to analyze markers in wastewater treatment plant (WWTP) influent to characterize emerging chemicals, drug use patterns, or disease spread within com-munities. This approach can be particularly helpful in understanding outbreaks of disease like the novel Coronavirus disease-19 (COVID-19) when combined with clinical datasets. In this study, three RT-ddPCR assays (N1, N2, N3) were used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in weekly samples from nine WWTPs in southeastern Virginia. In the first several weeks of sampling, SARS-CoV-2 detections were sporadic. Frequency of detections and overall concentrations of RNA within samples increased from mid March into late July. During the twenty-one week study, SARS-CoV-2 concentrations ranged from 10(1) to 10(4) copies 100 mL(-1) in samples where viral RNA was detected. Fluctuations in population normalized loading rates in several of the WWTP service areas agreed with known outbreaks during the study. Here we propose several ways that data can be presented spatially and temporally to be of greatest use to public health officials. As the COVID-19 pandemic wanes, it is likely that communities will see increased incidence of small, localized outbreaks. In these instances, WBE could be used as a pre-screening tool to better target clinical testing needs in communities with limited resources. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:9
相关论文
共 50 条
  • [1] COVID-19 Surveillance Wastewater-based epidemiology
    Mullasseri, Sileesh
    CURRENT SCIENCE, 2021, 120 (11): : 1660 - 1660
  • [2] A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal
    Monteiro, Silvia
    Rente, Daniela
    Cunha, Monica, V
    Gomes, Manuel Carmo
    Marques, Tiago A.
    Lourenco, Artur B.
    Cardoso, Eugenia
    Alvaro, Pedro
    Silva, Marco
    Coelho, Norberta
    Vilaca, Joao
    Meireles, Fatima
    Broco, Nuno
    Carvalho, Marta
    Santos, Ricardo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [3] Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey
    Chen, Chen
    Wang, Yunfan
    Kaur, Gursharn
    Adiga, Aniruddha
    Espinoza, Baltazar
    Venkatramanan, Srinivasan
    Warren, Andrew
    Lewis, Bryan
    Crow, Justin
    Singh, Rekha
    Lorentz, Alexandra
    Toney, Denise
    Marathe, Madhav
    EPIDEMICS, 2024, 49
  • [4] Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies
    Malla, Bikash
    Shrestha, Sadhana
    Sthapit, Niva
    Hirai, Soichiro
    Raya, Sunayana
    Rahmani, Aulia Fajar
    Angga, Made Sandhyana
    Siri, Yadpiroon
    Ruti, Annisa Andarini
    Haramoto, Eiji
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 946
  • [5] Wastewater-Based Epidemiology for Managing the COVID-19 Pandemic
    Fuschi, Claire
    Pu, Haihui
    Negri, Maria
    Colwell, Rita
    Chen, Junhong
    ACS ES&T WATER, 2021, 1 (06): : 1352 - 1362
  • [6] Wastewater-based epidemiology for COVID-19 using dynamic artificial neural networks
    Zamarreno, Jesus M.
    Torres-Franco, Andres F.
    Goncalves, Jose
    Munoz, Raul
    Rodriguez, Elisa
    Eiros, Jose Maria
    Garcia-Encina, Pedro
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 917
  • [7] Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era
    Armas, Federica
    Chandra, Franciscus
    Lee, Wei Lin
    Gu, Xiaoqiong
    Chen, Hongjie
    Xiao, Amy
    Leifels, Mats
    Wuertz, Stefan
    Alm, Eric J.
    Thompson, Janelle
    ENVIRONMENT INTERNATIONAL, 2023, 171
  • [8] Evaluating Interlaboratory Variability in Wastewater-Based COVID-19 Surveillance
    Azzellino, Arianna
    Pellegrinelli, Laura
    Pedrini, Ramon
    Turolla, Andrea
    Bertasi, Barbara
    Binda, Sandro
    Castiglioni, Sara
    Cocuzza, Clementina E.
    Ferrari, Fabio
    Franzetti, Andrea
    Guiso, Maria Giovanna
    Losio, Marina Nadia
    Martinelli, Marianna
    Martines, Antonino
    Musumeci, Rosario
    Oliva, Desdemona
    Sandri, Laura
    Primache, Valeria
    Righi, Francesco
    Scarazzato, Annalisa
    Schiarea, Silvia
    Pariani, Elena
    Ammoni, Emanuela
    Cereda, Danilo
    Malpei, Francesca
    MICROORGANISMS, 2025, 13 (03)
  • [9] Wastewater-Based Epidemiological Modeling for Continuous Surveillance of COVID-19 Outbreak
    Fazli, Mehrdad
    Sklar, Samuel
    Porter, Michael D.
    French, Brent A.
    Shakeri, Heman
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4342 - 4349
  • [10] How has the COVID-19 pandemic impacted wastewater-based epidemiology?
    Barcellos, Demian S.
    Barquilha, Carlos E. R.
    Oliveira, Pamela E.
    Prokopiuk, Mario
    Etchepare, Ramiro G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 892