Seismicity analysis through point-process modeling: A review

被引:304
|
作者
Ogata, Y [1 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 106, Japan
关键词
causal relationship; EPAS model; modified Omori formula; relative quiescence; seasonality of seismicity; space-time models;
D O I
10.1007/s000240050275
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The occurrence times of earthquakes can be considered to be a point process, and suitable modeling of the conditional intensity function of a point process is useful for the investigation of various statistical features of seismic activity. This manuscript summarizes likelihood based methods of analysis of point processes, and reviews useful models for particular analyses of seismicity. Most of the analyses can be implemented by the computer programs published by the author and collaborators.
引用
收藏
页码:471 / 507
页数:37
相关论文
共 50 条
  • [41] XII. Point-process mapping of 15 massive protoclusters☆
    Dell'Ova, P.
    Motte, F.
    Gusdorf, A.
    Pouteau, Y.
    Men'shchikov, A.
    Diaz-Gonzalez, D.
    Galvan-Madrid, R.
    Lesaffre, P.
    Didelon, P.
    Stutz, A. M.
    Towner, A. P. M.
    Marsh, K.
    Whitworth, A.
    Armante, M.
    Bonfand, M.
    Nony, T.
    Valeille-Manet, M.
    Bontemps, S.
    Csengeri, T.
    Cunningham, N.
    Ginsburg, A.
    Louvet, F.
    Alvarez-Gutierrez, R. H.
    Brouillet, N.
    Salinas, J.
    Sanhueza, P.
    Nakamura, F.
    Nguyen Luong, Q.
    Baug, T.
    Fernandez-Lopez, M.
    Liu, H. -l.
    Olguin, F.
    ASTRONOMY & ASTROPHYSICS, 2024, 687
  • [42] Space-Time Point-Process Models for Earthquake Occurrences
    Yosihiko Ogata
    Annals of the Institute of Statistical Mathematics, 1998, 50 : 379 - 402
  • [43] Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part II: Application to the Rat Hippocampus
    Zanos, Theodoros P.
    Hampson, Robert E.
    Deadwyler, Samuel E.
    Berger, Theodore W.
    Marmarelis, Vasilis Z.
    ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (08) : 1668 - 1682
  • [44] SPECTRAL-ANALYSIS OF CARDIAC ACTIVITY - A POINT-PROCESS APPROACH INCLUDING A GENERAL TEST FOR NONSTATIONARITY
    WEBER, EJM
    MOLENAAR, PCM
    VANDERMOLEN, MW
    PSYCHOPHYSIOLOGY, 1987, 24 (05) : 620 - 621
  • [45] Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France
    Opitz, Thomas
    Bonneu, Florent
    Gabriel, Edith
    SPATIAL STATISTICS, 2020, 40
  • [46] Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part II: Application to the Rat Hippocampus
    Theodoros P. Zanos
    Robert E. Hampson
    Samuel E. Deadwyler
    Theodore W. Berger
    Vasilis Z. Marmarelis
    Annals of Biomedical Engineering, 2009, 37 : 1668 - 1682
  • [47] DISAGGREGATION OF DAILY RAINFALL BY CONDITIONAL SIMULATION FROM A POINT-PROCESS MODEL
    GLASBEY, CA
    COOPER, G
    MCGECHAN, MB
    JOURNAL OF HYDROLOGY, 1995, 165 (1-4) : 1 - 9
  • [48] Variational Estimation in Spatiotemporal Systems From Continuous and Point-Process Observations
    Zammit-Mangion, Andrew
    Sanguinetti, Guido
    Kadirkamanathan, Visakan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3449 - 3459
  • [49] On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point-Process Data
    Saul Gaitan, Rodrigo
    Lii, Keh-Shin
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (5-6) : 711 - 736
  • [50] Point-process Nonlinear Autonomic Assessment of Depressive States in Bipolar Patients
    Valenza, G.
    Citi, L.
    Gentili, C.
    Lanata, A.
    Scilingo, E. P.
    Barbieri, R.
    METHODS OF INFORMATION IN MEDICINE, 2014, 53 (04) : 296 - 302