Algorithms for generating maximum weight independent sets in circle graphs, circular-arc overlap graphs, and spider graphs

被引:0
|
作者
Taki, M [1 ]
Hatakenaka, H
Kashiwabara, T
机构
[1] Nara Natl Coll Technol, Dept Informat Engn, Yamatokohriyama 6391080, Japan
[2] Osaka Univ, Dept Informat & Comp Sci, Toyonaka, Osaka 5608531, Japan
关键词
circle graph; independent set; generation algorithm; intersection graph; interval graph; overlap graph; spider graph; circular-arc overlap graph;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose an algorithm for generating maximum weight independent sets in a circle graph, that is, for putting out all maximum weight independent sets one by one without duplication. The time complexity is O(n(3) + beta), where n is the number of vertices, beta output size, i.e., the sum of the cardinalities of the output sets. It is shown that the same approach can be applied for spider graphs and for circuiar-arc overlap graphs.
引用
收藏
页码:1636 / 1640
页数:5
相关论文
共 50 条
  • [31] OPTIMAL PARALLEL CIRCLE COVER AND INDEPENDENT SET ALGORITHMS FOR CIRCULAR ARC GRAPHS
    YU, MS
    CHEN, CL
    LEE, RCT
    PROCEEDINGS OF THE 1989 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, VOL 3: ALGORITHMS AND APPLICATIONS, 1989, : 126 - 129
  • [32] Power Domination in Circular-Arc Graphs
    Liao, Chung-Shou
    Lee, D. T.
    ALGORITHMICA, 2013, 65 (02) : 443 - 466
  • [33] The clique operator on circular-arc graphs
    Lin, Min Chih
    Soulignac, Francisco J.
    Szwarcfiter, Jayme L.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) : 1259 - 1267
  • [34] Maximum independent set and maximum clique algorithms for overlap graphs
    Cenek, E
    Stewart, L
    DISCRETE APPLIED MATHEMATICS, 2003, 131 (01) : 77 - 91
  • [35] Proper Helly circular-arc graphs
    Lin, Min Chih
    Soulignac, Francisco J.
    Szwarcfiter, Jayme L.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2007, 4769 : 248 - +
  • [36] Efficient algorithms for centers and medians in interval and circular-arc graphs
    Bespamyatnikh, S
    Bhattacharya, B
    Keil, M
    Kirkpatrick, D
    Segal, M
    NETWORKS, 2002, 39 (03) : 144 - 152
  • [37] Recognition of perfect circular-arc graphs
    Cameron, Kathie
    Eschen, Elaine A.
    Hoang, Chinh T.
    Sritharan, R.
    GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 97 - +
  • [38] Parallel algorithms for finding the center of interval and circular-arc graphs
    Hsu, FR
    Shan, MK
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (10) : 2704 - 2709
  • [39] Partial Characterizations of Circular-Arc Graphs
    Bonomo, F.
    Duran, G.
    Grippo, L. N.
    Safe, M. D.
    JOURNAL OF GRAPH THEORY, 2009, 61 (04) : 289 - 306
  • [40] EFFICIENT TEST FOR CIRCULAR-ARC GRAPHS
    TUCKER, A
    SIAM JOURNAL ON COMPUTING, 1980, 9 (01) : 1 - 24