Online Learning of Sparse Pseudo-Input Gaussian Process

被引:0
|
作者
Suk, Heung-Il [1 ]
Wang, Yuzhuo [1 ]
Lee, Seong-Whan [1 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
关键词
Gaussian process regression; incremental learning; pseudo-input;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel method of online learning of sparse pseudo-data, representative of the whole training data, for Gaussian Process (GP) regressions. We call the proposed method Incremental Sparse Pseudo-input Gaussian Process (ISPGP) regression. The proposed ISPGP algorithm allows for training from either a huge amount of training data by scanning through it only once or an online incremental training dataset. Thanks to the nature of the incremental learning algorithm, the proposed ISPGP algorithm can theoretically work with infinite data to which the conventional GP or SPGP algorithm is not applicable. From our experimental results on the KIN40K dataset, we can see that the proposed ISPGP algorithm is comparable to the conventional GP algorithm using the same number of training data. Although the proposed ISPGP algorithm performs slightly worse than Snelson and Ghahramani's SPGP algorithm, the level of performance degradation is acceptable.
引用
收藏
页码:1357 / 1360
页数:4
相关论文
共 50 条
  • [21] Sparse online Gaussian process adaptation for incremental backstepping flight control
    Ignatyev, Dmitry I.
    Shin, Hyo-Sang
    Tsourdos, Antonios
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 136
  • [22] Sparse online warped Gaussian process for wind power probabilistic forecasting
    Kou, Peng
    Gao, Feng
    Guan, Xiaohong
    APPLIED ENERGY, 2013, 108 : 410 - 428
  • [23] Online sparse Gaussian process regression using FITC and PITC approximations
    Bijl, Hildo
    van Wingerden, Jan-Willem
    Schon, Thomas B.
    Verhaegen, Michel
    IFAC PAPERSONLINE, 2015, 48 (28): : 703 - 708
  • [24] Input Dependent Sparse Gaussian Processes
    Jafrasteh, Bahram
    Villacampa-Calvo, Carlos
    Hernandez-Lobato, Daniel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [25] Active Online Learning for Interactive Segmentation Using Sparse Gaussian Processes
    Triebel, Rudolph
    Stuehmer, Jan
    Souiai, Mohamed
    Cremers, Daniel
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 641 - 652
  • [26] Online Sparse Gaussian Process Based Human Motion Intent Learning for an Electrically Actuated Lower Extremity Exoskeleton
    Long, Yi
    Du, Zhi-jiang
    Chen, Chao-feng
    Dong, Wei
    Wang, Wei-dong
    2017 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2017, : 919 - 924
  • [27] Learning Multitask Gaussian Process Over Heterogeneous Input Domains
    Liu, Haitao
    Wu, Kai
    Ong, Yew-Soon
    Bian, Chao
    Jiang, Xiaomo
    Wang, Xiaofang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6232 - 6244
  • [28] Adaptive Sparse Gaussian Process
    Gomez-Verdejo, Vanessa
    Parrado-Hernandez, Emilio
    Martinez-Ramon, Manel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16383 - 16395
  • [29] Learning gas distribution models using sparse Gaussian process mixtures
    Stachniss, Cyrill
    Plagemann, Christian
    Lilienthal, Achim J.
    AUTONOMOUS ROBOTS, 2009, 26 (2-3) : 187 - 202
  • [30] Learning gas distribution models using sparse Gaussian process mixtures
    Cyrill Stachniss
    Christian Plagemann
    Achim J. Lilienthal
    Autonomous Robots, 2009, 26 : 187 - 202