Topological entanglement negativity in Chern-Simons theories

被引:47
|
作者
Wen, Xueda [1 ,2 ]
Chang, Po-Yao [3 ]
Ryu, Shinsei [1 ,2 ]
机构
[1] Univ Illinois, Inst Condensed Matter Theory, 1110 West Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[3] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
来源
基金
美国国家科学基金会;
关键词
Chern-Simons Theories; Topological Field Theories;
D O I
10.1007/JHEP09(2016)012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work [35].
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Exact instanton expansion of superconformal Chern-Simons theories from topological strings
    Moriyama, Sanefumi
    Nosaka, Tomoki
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [42] Magnetic symmetries and vortices in Chern-Simons theories
    Dunne, G
    Kovner, A
    Tekin, B
    [J]. PHYSICAL REVIEW D, 2001, 63 (02):
  • [43] Covariant lagrangian formalism for chern-simons theories
    Borowiec, A.
    Fatibene, L.
    Francaviglia, M.
    Mercadante, S.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (02) : 277 - 283
  • [44] Conformal supergravities as Chern-Simons theories revisited
    Sergei M. Kuzenko
    Gabriele Tartaglino-Mazzucchelli
    [J]. Journal of High Energy Physics, 2013
  • [45] TOPOLOGICAL METHODS TO COMPUTE CHERN-SIMONS INVARIANTS
    AUCKLY, DR
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 229 - 251
  • [46] Exact Chern-Simons / Topological String duality
    Krefl, Daniel
    Mkrtchyan, Ruben L.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [47] Chern-Simons topological term at finite temperature
    Felipe, RG
    [J]. PHYSICS LETTERS B, 1998, 417 (1-2) : 114 - 118
  • [48] N=8 superconformal Chern-Simons theories
    Bandres, Miguel A.
    Lipstein, Arthur E.
    Schwarz, John H.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [49] Conformal supergravities as Chern-Simons theories revisited
    Kuzenko, Sergei M.
    Tartaglino-Mazzucchelli, Gabriele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03):
  • [50] ON WILSON LOOPS IN ABELIAN CHERN-SIMONS THEORIES
    HANSSON, TH
    KARLHEDE, A
    ROCEK, M
    [J]. PHYSICS LETTERS B, 1989, 225 (1-2) : 92 - 94