Modifying and Reducing Numerical Dissipation in A Two-Dimensional Central-Upwind Scheme

被引:0
|
作者
Yu, Chi-Jer [1 ]
Liu, Chii-Tung [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[2] Chaoyang Univ Technol, Dept Comp Sci & Informat Engn, Wufong Township 41349, Taichung County, Taiwan
关键词
Hyperbolic systems of conservation laws; Godunov-type finite-volume methods; central-upwind scheme; Kurganov; numerical dissipation; anti-diffusion; HYPERBOLIC CONSERVATION-LAWS; WENO SCHEMES; RESOLUTION; FLOW;
D O I
10.4208/aamm.10-m11142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents a modification of the central-upwind Kurganov scheme for approximating the solution of the 2D Euler equation. The prototype, extended from a 1D model, reduces substantially less dissipation than expected. The problem arises from over-restriction of some slope limiters, which keep slopes between interfaces of cells to be Total-Variation-Diminishing. This study reports the defect and presents a re-derived optimal formula. Numerical experiments highlight the significance of this formula, especially in long-time, large-scale simulations.
引用
收藏
页码:340 / 353
页数:14
相关论文
共 50 条
  • [31] A central-upwind scheme with artificial viscosity for shallow-water flows in channels
    Hernandez-Duenas, Gerardo
    Beljadid, Abdelaziz
    [J]. ADVANCES IN WATER RESOURCES, 2016, 96 : 323 - 338
  • [32] Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme
    Alina Chertock
    Shaoshuai Chu
    Alexander Kurganov
    [J]. Journal of Scientific Computing, 2021, 89
  • [33] Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme
    Chertock, Alina
    Chu, Shaoshuai
    Kurganov, Alexander
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [34] CENTRAL-UPWIND SCHEMES FOR TWO-LAYER SHALLOW WATER EQUATIONS
    Kurganov, Alexander
    Petrova, Guergana
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 1742 - 1773
  • [35] A POSITIVITY-PRESERVING CENTRAL-UPWIND SCHEME FOR ISENTROPIC TWO-PHASE FLOWS THROUGH DEVIATED PIPES
    Hernandez-Duenas, Gerardo
    Velasco-Garcia, Ulises
    Velasco-Hernandez, Jorge X.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1433 - 1457
  • [36] VERY HIGH ORDER CENTRAL-UPWIND SCHEME FOR SOLVING SYSTEMS OF CONSERVATION LAWS
    Zahran, Yousef Hashem
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (03): : 349 - 358
  • [37] Semidiscrete central-upwind scheme for conservation laws with a discontinuous flux function in space
    Wang, Guodong
    Ge, Cishui
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (17) : 7065 - 7073
  • [38] A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels
    Hernandez-Duenas, Gerardo
    Balbas, Jorge
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 2185 - 2210
  • [39] FLUID SIMULATION USING AN ADAPTIVE SEMI-DISCRETE CENTRAL-UPWIND SCHEME
    Cai, L.
    Zhou, J.
    Feng, J. -H.
    Xie, W. -X.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2007, 4 (02) : 283 - 297
  • [40] The two-dimensional streamline upwind scheme for the convection-reaction equation
    Sheu, TWH
    Shiah, HY
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (05) : 575 - 591