New Type Direction Curves in 3-Dimensional Compact Lie Group

被引:7
|
作者
Cakmak, Ali [1 ]
机构
[1] Bitlis Eren Univ, Fac Sci & Arts, Dept Math, TR-13000 Bitlis, Turkey
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 03期
关键词
Lie group; rectifying-direction curve; osculating-direction curve; normal-direction curve; MANNHEIM PARTNER CURVES; HELICES;
D O I
10.3390/sym11030387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, new types of associated curves, which are defined as rectifying-direction, osculating-direction, and normal-direction, in a three-dimensional Lie group G are achieved by using the general definition of the associated curve, and some characterizations for these curves are obtained. Additionally, connections between the new types of associated curves and the curves, such as helices, general helices, Bertrand, and Mannheim, are given.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The action of a compact Lie group on nilpotent Lie algebras of type {n, 2}
    Falcone, Giovanni
    Figula, Agota
    FORUM MATHEMATICUM, 2016, 28 (04) : 795 - 806
  • [22] NEW 3-DIMENSIONAL STRUCTURE FOR A-TYPE STARCH
    IMBERTY, A
    CHANZY, H
    PEREZ, S
    BULEON, A
    TRAN, V
    MACROMOLECULES, 1987, 20 (10) : 2634 - 2636
  • [23] Lie superalgebras based on a 3-dimensional real or complex Lie algebra
    Hernandez, I.
    Salgado, G.
    Sanchez-Valenzuela, O. A.
    JOURNAL OF LIE THEORY, 2006, 16 (03) : 539 - 560
  • [24] On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups
    Moghaddam, H. R. Salimi
    MONATSHEFTE FUR MATHEMATIK, 2015, 177 (04): : 649 - 658
  • [25] On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups
    H. R. Salimi Moghaddam
    Monatshefte für Mathematik, 2015, 177 : 649 - 658
  • [26] Three-dimensional Lie group actions on compact (4n+3)-dimensional geometric manifolds
    Kamishima, Y
    Udono, T
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (01) : 1 - 26
  • [27] Special Curves in 3-Dimensional Euclidean Space
    Yuan Y.
    Li J.
    Liu H.-L.
    Liu, Hui-Li (liuhl@mail.neu.edu.cn), 1669, Northeast University (38): : 1669 - 1672
  • [28] Triharmonic Curves in 3-Dimensional Homogeneous Spaces
    S. Montaldo
    A. Pámpano
    Mediterranean Journal of Mathematics, 2021, 18
  • [29] Bertrand curves in 3-dimensional space forms
    Choi, Jin Ho
    Kang, Tae Ho
    Kim, Young Ho
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1040 - 1046
  • [30] Clustering Performance of 3-Dimensional Hilbert Curves
    Dai, H. K.
    Su, H. C.
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 299 - 311