On necessary conditions for infinite-dimensional extremum problems

被引:2
|
作者
Giannessi, F
Mastroeni, G
Uderzo, A
机构
[1] Univ Pisa, Fac Sci, Dept Math, I-56127 Pisa, Italy
[2] Univ Milan, Dept Stat, Milan, Italy
关键词
image space; Lagrange multipliers; multifunctions; necessary optimality conditions; nonsmooth optimization;
D O I
10.1023/B:JOGO.0000026452.32070.99
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we carry on the analysis (introduced in [4] and developed in [2, 7]) of optimality conditions for extremum problems having infinite-dimensional image, in the case of unilateral constraints. This is done by associating to the feasible set a special multifunction. It turns out that the classic Lagrangian multiplier functions can be factorized into a constant term and a variable one; the former is the gradient of a separating hyperplane as introduced in [4, 5]; the latter plays the role of selector of the above multifunction. Finally, the need of enlarging the class of Lagrangian multiplier functions is discussed.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 50 条
  • [21] Necessary optimality conditions for infinite dimensional state constrained control problems
    Frankowska, H.
    Marchini, E. M.
    Mazzola, M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7294 - 7327
  • [22] How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems
    Wachsmuth, Daniel
    Roesch, Arnd
    OPTIMAL CONTROL OF COUPLED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 158 : 297 - +
  • [23] Conditions for strict dissipativity of infinite-dimensional generalized linear-quadratic problems
    Grune, Lars
    Muff, David
    Schaller, Manuel
    IFAC PAPERSONLINE, 2021, 54 (19): : 302 - 306
  • [24] NECESSARY HIGHER-ORDER CONDITIONS IN EXTREMUM PROBLEMS
    IZMAILOV, AF
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1992, 32 (08) : 1167 - 1169
  • [25] 1ST AND 2ND-ORDER NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR INFINITE-DIMENSIONAL PROGRAMMING-PROBLEMS
    MAURER, H
    ZOWE, J
    MATHEMATICAL PROGRAMMING, 1979, 16 (01) : 98 - 110
  • [26] Necessary conditions for an extremum in 2-regular problems
    Avakov, E. R.
    Arutyunov, A. V.
    Izmailov, A. F.
    DOKLADY MATHEMATICS, 2006, 73 (03) : 340 - 343
  • [27] Necessary conditions for an extremum in 2-regular problems
    E. R. Avakov
    A. V. Arutyunov
    A. F. Izmailov
    Doklady Mathematics, 2006, 73 : 340 - 343
  • [28] Ensemble sampler for infinite-dimensional inverse problems
    Coullon, Jeremie
    Webber, Robert J.
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [29] Geometric MCMC for infinite-dimensional inverse problems
    Beskos, Alexandros
    Girolami, Mark
    Lan, Shiwei
    Farrell, Patrick E.
    Stuart, Andrew M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 327 - 351
  • [30] Infinite-Dimensional Inverse Problems with Finite Measurements
    Giovanni S. Alberti
    Matteo Santacesaria
    Archive for Rational Mechanics and Analysis, 2022, 243 : 1 - 31