Amplitude Oscillations of the Resonant Phenomena in a Frenkel-Kontorova Model with an Incommensurate Structure

被引:0
|
作者
Yan Yan-Zong [1 ]
Wang Cang-Long [2 ,3 ,4 ]
Shao Zhi-Gang [5 ]
Yang Lei [2 ,3 ,4 ,6 ]
机构
[1] Longdong Univ, Coll Math & Stat, Qingyang 745000, Peoples R China
[2] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[3] NW Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China
[4] NW Normal Univ, Joint Lab Atom & Mol Phys NWNU & IMP CAS, Lanzhou 730070, Peoples R China
[5] S China Normal Univ, Sch Phys & Telecommun Engn, Inst Condensed Matter Phys, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[6] Lanzhou Univ, Dept Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
SHAPIRO STEPS; AC DYNAMICS; INTERFERENCE; LOCKING;
D O I
10.1088/0256-307X/29/6/060507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical mode locking phenomena in incommensurate structures of the dc- and ac-driven overdamped Frenkel-Kontorova model are studied by molecular-dynamics simulations. It is found that the Shapiro steps exhibit significantly different amplitude and frequency dependences from the ones observed in the commensurate structures. The step widths still oscillate with the amplitude, but the form is no longer Bessel-like, i.e., the anomaly appears in our simulations. The same type of anomalies is also exhibited by the critical depinning force. The oscillatory behavior and the anomalies are also revealed in the ((F) over bar, F-ac) phase diagram where three phases are observed. These oscillations are directly correlated with the existence and the stability of interference phenomena in real systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Unorthodox analysis of the Frenkel-Kontorova model
    Universitaet Oldenburg, Oldenburg, Germany
    Phys A Stat Theor Phys, 1-2 (266-284):
  • [22] A model for a driven Frenkel-Kontorova chain
    Quapp, Wolfgang
    Bofill, Josep Maria
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (05):
  • [23] Frenkel-Kontorova model with pinning cusps
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICA D, 1997, 107 (01): : 30 - 42
  • [24] Farey fractions and the Frenkel-Kontorova model
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICAL REVIEW E, 1997, 55 (03): : 2628 - 2631
  • [25] SOLUTION TO FRENKEL-KONTOROVA DISLOCATION MODEL
    HOBART, R
    CELLI, V
    JOURNAL OF APPLIED PHYSICS, 1962, 33 (01) : 60 - &
  • [26] GLOBAL UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL
    BIHAM, O
    MUKAMEL, D
    PHYSICAL REVIEW A, 1989, 39 (10): : 5326 - 5335
  • [27] The ground state of the Frenkel-Kontorova model
    Babushkin, A. Yu.
    Abkaryan, A. K.
    Dobronets, B. S.
    Krasikov, V. S.
    Filonov, A. N.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1834 - 1845
  • [28] Heat conduction in the Frenkel-Kontorova model
    Hu, BB
    Yang, L
    CHAOS, 2005, 15 (01)
  • [29] Nonlinear dynamics of the Frenkel-Kontorova model
    Braun, OM
    Kivshar, YS
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2): : 1 - 108
  • [30] Farey fractions and the Frenkel-Kontorova model
    Phys Rev E., 3-A (2628):