Quantized vortex reconnection: Fixed points and initial conditions

被引:8
|
作者
Meichle, David P. [1 ,2 ]
Rorai, Cecilia [2 ,3 ,4 ]
Fisher, Michael E. [1 ,3 ]
Lathrop, D. P. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Trieste, Sch Environm & Ind Fluid Mech, Trieste, Italy
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 01期
基金
美国国家科学基金会;
关键词
GROSS-PITAEVSKII EQUATION; SUPERFLUID; VORTICES; WAVES; LINES;
D O I
10.1103/PhysRevB.86.014509
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantized vortices are phase singularities in complex fields. In superfluids, they appear as mobile interacting defects that may cross and reconnect by exchanging tails. Reconnection is a topology-changing event that allows vortex tangles to decay; it is a defining signature of quantum turbulence. We report a family of fixed points (i.e., stationary solutions), including planar forms, that capture reconnection in the Gross-Pitaevskii model in contrast to previous suggestions of pyramidal structures. These are obtained using a well known, systematic method for generating low-energy relaxed initial conditions for Gross-Pitaevskii simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] SIMULATION OF VORTEX RECONNECTION
    KERR, RM
    HUSSAIN, F
    PHYSICA D, 1989, 37 (1-3): : 474 - 484
  • [22] BRIDGING IN VORTEX RECONNECTION
    KIDA, S
    TAKAOKA, M
    PHYSICS OF FLUIDS, 1987, 30 (10) : 2911 - 2914
  • [23] Polarized vortex reconnection
    Yao, Jie
    Hussain, Fazle
    JOURNAL OF FLUID MECHANICS, 2021, 922
  • [24] Dynamics of Quantized Vortices Before Reconnection
    Andryushchenko, V. A.
    Kondaurova, L. P.
    Nemirovskii, S. K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 185 (5-6) : 377 - 383
  • [25] WEAK CONDITIONS FOR EXISTENCE OF RANDOM FIXED POINTS
    Fierro, Raul
    Martinez, Carlos
    Orellana, Elena
    FIXED POINT THEORY, 2011, 12 (01): : 83 - 90
  • [26] Dynamics of Quantized Vortices Before Reconnection
    V. A. Andryushchenko
    L. P. Kondaurova
    S. K. Nemirovskii
    Journal of Low Temperature Physics, 2016, 185 : 377 - 383
  • [27] New Nonlinear Conditions and Inequalities for the Existence of Coincidence Points and Fixed Points
    Du, Wei-Shih
    Zheng, Shao-Xuan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [28] Quantized Vortex Knots
    David C. Samuels
    Carlo F. Barenghi
    Renzo L. Ricca
    Journal of Low Temperature Physics, 1998, 110 : 509 - 514
  • [29] IMPULSE OF QUANTIZED VORTEX
    TURSKI, LA
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (02): : 103 - &
  • [30] Quantized vortex knots
    Samuels, DC
    Barenghi, CF
    Ricca, RL
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 110 (1-2) : 509 - 514