High order moment closure for Vlasov-Maxwell equations

被引:4
|
作者
Di, Yana [1 ,2 ,3 ]
Kou, Zhenzhong [3 ]
Li, Ruo [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Peking Univ, LMAM, HEDPS & CAPT, Beijing 100871, Peoples R China
[5] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Moment closure; Vlasov-Maxwell (VM) equations; Boltzmann equation; extended magnetohydrodynamics; REGULARIZATION; SYSTEM; NUMBER; SCHEME;
D O I
10.1007/s11464-015-0463-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extended magnetohydrodynamic models are derived based on the moment closure of the Vlasov-Maxwell (VM) equations. We adopt the Grad type moment expansion which was firstly proposed for the Boltzmann equation. A new regularization method for the Grad's moment system was recently proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. For the VM equations, the moment expansion of the convection term is exactly the same as that in the Boltzmann equation, thus the new developed regularization applies. The moment expansion of the electromagnetic force term in the VM equations turns out to be a linear source term, which can preserve the conservative properties of the distribution function in the VM equations perfectly.
引用
收藏
页码:1087 / 1100
页数:14
相关论文
共 50 条
  • [11] Perturbative variational formulation of the Vlasov-Maxwell equations
    Brizard, Alain J.
    PHYSICS OF PLASMAS, 2018, 25 (11)
  • [12] Hamiltonian time integrators for Vlasov-Maxwell equations
    He, Yang
    Qin, Hong
    Sun, Yajuan
    Xiao, Jianyuan
    Zhang, Ruili
    Liu, Jian
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [13] Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations"
    Qin, Hong
    He, Yang
    Zhang, Ruili
    Liu, Jian
    Xiao, Jianyuan
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 721 - 723
  • [14] Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    Chan, AA
    PHYSICS OF PLASMAS, 1999, 6 (12) : 4548 - 4558
  • [15] Solving Vlasov-Maxwell equations in singular geometries
    Assous, Franck
    Ciarlet, Patrick, Jr.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1078 - 1085
  • [16] ON THE STATIONARY SOLUTIONS FOR THE SYSTEM OF THE VLASOV-MAXWELL EQUATIONS
    RUDYKH, GA
    SIDOROV, NA
    SINITSYN, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 594 - 597
  • [17] HERMITIAN STRUCTURE FOR THE LINEARIZED VLASOV-POISSON AND VLASOV-MAXWELL EQUATIONS
    LARSSON, J
    PHYSICAL REVIEW LETTERS, 1991, 66 (11) : 1466 - 1468
  • [18] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [19] Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    PHYSICS OF PLASMAS, 2000, 7 (12) : 4816 - 4822
  • [20] A new asymptotic approximate model for the Vlasov-Maxwell equations
    Assous, F.
    Tsipis, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 691 - 698