Chromatic information coding in optical systems for hyperspectral imaging and chromatic confocal sensing

被引:5
|
作者
Hillenbrand, M. [1 ]
Grewe, A. [1 ]
Bichra, M. [1 ]
Mitschunas, B. [1 ]
Kirner, R. [1 ]
Weiss, R. [1 ]
Sinzinger, S. [1 ]
机构
[1] Tech Univ Ilmenau, IMN MacroNano, Fachgebiet Tech Opt, D-98693 Ilmenau, Germany
来源
OPTICAL SYSTEMS DESIGN 2012 | 2012年 / 8550卷
关键词
dispersion; hyperchromats; lens design; diffractive optics; chromatic confocal sensing; microoptics; optical metrology; hyperspectral imaging; HYPERCHROMATS;
D O I
10.1117/12.981147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dispersion causes the focal lengths of refractive and diffractive optical elements to vary with wavelength. In our contribution we show how it can be used for chromatic encoding and decoding of optical signals. We specifically discuss how these concepts can be applied for the implementation of systems with applications in the growing fields of hyperspectral imaging and chromatic distance coding. Refractive systems as well as hybrid combinations of diffractive and refractive elements are used to create specific chromatic aberrations of the sensors. Our design approach enables the tailoring of the sensor properties to the measurement problem and assists designers in finding optimized solutions for industrial applications. The focus of our research is on parallelized imaging systems that cover extended objects. In comparison to point sensors, such systems promise reduced image acquisition times and an increased overall performance. Concepts for three-dimensional profilometry with chromatic confocal sensor systems as well as spectrally resolved imaging of object scenes are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Errors in confocal fluorescence ratiometric imaging microscopy due to chromatic aberration
    Lin, Yuxiang
    Gmitro, Arthur F.
    APPLIED OPTICS, 2011, 50 (01) : 95 - 102
  • [22] Low-cost, chromatic confocal endomicroscope for cellular imaging in vivo
    Kulkarni, Nachiket
    Masciola, Andrew
    Nishant, Abhinav
    Kim, Kyung-Jo
    Choi, Heejoo
    Gmitro, Arthur
    Freeman, Esther E.
    Semeere, Aggrey
    Nakalembe, Miriam
    Kang, Dongkyun
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (09): : 5629 - 5643
  • [23] Chromatic difference electron imaging systems.
    Wendt, Georg
    ZEITSCHRIFT FUR PHYSIK, 1940, 116 (7-8): : 436 - 443
  • [24] Chromatic confocal microscopy for multi-depth imaging of epithelial tissue
    Olsovsky, Cory
    Shelton, Ryan
    Carrasco-Zevallos, Oscar
    Applegate, Brian E.
    Maitland, Kristen C.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (05): : 732 - 740
  • [25] Characterization of a chromatic confocal displacement sensor integrated with an optical laser head
    Zakrzewski, A.
    Jurewicz, P.
    Koruba, P.
    Cwikla, M.
    Reiner, J.
    APPLIED OPTICS, 2021, 60 (11) : 3232 - 3241
  • [26] Design of a chromatic confocal displacement sensor integrated with an optical laser head
    Zakrzewski, A.
    Cwikla, M.
    Koruba, P.
    Jurewicz, P.
    Reiner, J.
    APPLIED OPTICS, 2020, 59 (29) : 9108 - 9117
  • [27] Chromatic aberration corrected switchable optical systems
    Roberts, David
    Liao, Zhi
    Hwang, J. Y.
    Nersisyan, S. R.
    Tabiryan, Nelson
    Steeves, D. M.
    Kimball, B. R.
    Bunning, Timothy J.
    LIQUID CRYSTALS XXII, 2018, 10735
  • [28] Chromatic-Aberration-Corrected Hyperspectral Single-Pixel Imaging
    Liu, Ying
    Yang, Zhao-Hua
    Yu, Yuan-Jin
    Wu, Ling-An
    Song, Ming-Yue
    Zhao, Zhi-Hao
    PHOTONICS, 2023, 10 (01)
  • [29] Hyperspectral Imaging Bioinspired by Chromatic Blur Vision in Color Blind Animals
    Zhan, Shuyue
    Zhou, Weiwen
    Ma, Xu
    Huang, Hui
    PHOTONICS, 2019, 6 (03)
  • [30] Imaging of nanoscale birefringence using polarization-resolved chromatic confocal microscopy
    Chan, Ming-Che
    Liao, Tzu Hsin
    Hsieh, Chi-Sheng
    Jeng, Shie-Chang
    Zhuo, Guan-Yu
    OPTICS EXPRESS, 2021, 29 (03) : 3965 - 3975