Critical limit and anisotropy in the two-point correlation function of three-dimensional O(N) models

被引:16
|
作者
Campostrini, M [1 ]
Pelissetto, A [1 ]
Rossi, P [1 ]
Vicari, E [1 ]
机构
[1] IST NAZL FIS NUCL,I-56126 PISA,ITALY
来源
EUROPHYSICS LETTERS | 1997年 / 38卷 / 08期
关键词
D O I
10.1209/epl/i1997-00286-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In three-dimensional O(N) models, we investigate the low-momentum behavior of the two-point Green's function G(x) in the critical region of the symmetric phase. We consider physical systems whose criticality is characterized by a rotational-invariant fixed point. In non-rotational invariant physical systems with O(N)-invariant interactions, the vanishing of space-anisotropy approaching the rotational-invariant fixed point is described by a critical exponent rho, which is universal and is related to the leading irrelevant operator breaking rotational invariance. At N infinity one finds rho = 2. We show that, for all values of N greater than or equal to 0, rho similar or equal to 2. Non-Gaussian corrections to the universal low-momentum behavior of G(x) are evaluated, and found to be very small.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [1] Two-point correlation function of three-dimensional O(N) models: The critical limit and anisotropy
    Campostrini, M
    Pelissetto, A
    Rossi, P
    Vicari, E
    [J]. PHYSICAL REVIEW E, 1998, 57 (01) : 184 - 210
  • [2] Critical behavior of the correlation function of three-dimensional O(N) models in the symmetric phase
    Campostrini, M
    Rossi, P
    Pelissetto, A
    Vicari, E
    [J]. NUCLEAR PHYSICS B, 1997, : 690 - 692
  • [3] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Lohmann, Martin
    Slade, Gordon
    Wallace, Benjamin C.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (06) : 1132 - 1161
  • [4] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Martin Lohmann
    Gordon Slade
    Benjamin C. Wallace
    [J]. Journal of Statistical Physics, 2017, 169 : 1132 - 1161
  • [5] Calculations on the two-point function of the O(N) model
    Benitez, Federico
    Mendez-Galain, Ramon
    Wschebor, Nicolas
    [J]. PHYSICAL REVIEW B, 2008, 77 (02)
  • [6] Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions
    Tewari, A
    Gokhale, AM
    Spowart, JE
    Miracle, DB
    [J]. ACTA MATERIALIA, 2004, 52 (02) : 307 - 319
  • [7] Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function
    Hamm, P
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (12):
  • [8] THE TWO-POINT CORRELATION FUNCTION OF THE FRACTIONAL PARTS OF √n IS POISSON
    El-Baz, Daniel
    Marklof, Jens
    Vinogradov, Ilya
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 2815 - 2828
  • [9] The evolution of the two-point correlation function
    Colin, P
    [J]. LARGE SCALE STRUCTURE: TRACKS AND TRACES, 1998, : 257 - 258
  • [10] An Accuracy-Aware Implementation of Two-Point Three-Dimensional Correlation Function using Bin-Recycling Strategy on GPU
    Mendez-Jimenez, Ivan
    Cardenas-Montes, Miguel
    Jose Rodriguez-Vazquez, Juan
    Sevilla-Noarbe, Ignacio
    Sanchez Alvaro, Eusebio
    Vega-Rodriguez, Miguel A.
    Alonso, David
    [J]. 2017 17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2017, : 913 - 920