The gravitational-wave signature of core-collapse supernovae

被引:254
|
作者
Ott, Christian D. [1 ,2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Niels Bohr Int Acad, Niels Bohr Inst, Copenhagen, Denmark
关键词
RELATIVISTIC STELLAR MODELS; EQUATION-OF-STATE; ACCRETION SHOCK INSTABILITY; PROTO-NEUTRON STAR; DIFFERENTIALLY ROTATING STARS; ARMED SPIRAL INSTABILITY; GAMMA-RAY BURSTS; NONRADIAL PULSATION; MASSIVE STARS; BLACK-HOLE;
D O I
10.1088/0264-9381/26/6/063001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3-5 Mpc from Earth, the rate jumps to 1 in similar to 2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at similar to 3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova.
引用
收藏
页数:48
相关论文
共 50 条
  • [41] On the progenitors of core-collapse supernovae
    Douglas C. Leonard
    [J]. Astrophysics and Space Science, 2011, 336 : 117 - 122
  • [42] Core-collapse supernovae at the threshold
    Janka, HT
    Buras, R
    Kifonidis, K
    Marek, A
    Rampp, M
    [J]. COSMIC EXPLOSIONS, 2005, 99 : 253 - 262
  • [43] Characterizing the Directionality of Gravitational Wave Emission from Matter Motions within Core-collapse Supernovae
    Pajkos, Michael A.
    VanCamp, Steven J.
    Pan, Kuo-Chuan
    Vartanyan, David
    Deppe, Nils
    Couch, Sean M.
    [J]. ASTROPHYSICAL JOURNAL, 2023, 959 (01):
  • [44] DIRECTED SEARCHES FOR BROADBAND EXTENDED GRAVITATIONAL WAVE EMISSION IN NEARBY ENERGETIC CORE-COLLAPSE SUPERNOVAE
    van Putten, Maurice H. P. M.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 819 (02):
  • [45] The progenitors of core-collapse supernovae
    Fraser, Morgan
    [J]. LIVES AND DEATH-THROES OF MASSIVE STARS, 2017, 12 (S329): : 32 - 38
  • [46] Spectropolarimetry of core-collapse supernovae
    Leonard, DC
    Filippenko, AV
    [J]. 1604-2004: Supernovae as Cosmological Lighthouses, 2005, 342 : 330 - 336
  • [47] The progenitors of core-collapse supernovae
    Eldridge, JJ
    Tout, CA
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 353 (01) : 87 - 97
  • [48] On the progenitors of core-collapse supernovae
    Leonard, Douglas C.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2011, 336 (01) : 117 - 122
  • [49] Progenitors of Core-Collapse Supernovae
    Smartt, Stephen J.
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 : 63 - 106
  • [50] Theory of core-collapse supernovae
    Janka, H.-Th.
    Langanke, K.
    Marek, A.
    Martinez-Pinedo, G.
    Mueller, B.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 442 (1-6): : 38 - 74