Bifunctional effects of the ordered Si atoms intercalated between quasi-free-standing epitaxial graphene and SiC(0001): graphene doping and substrate band bending

被引:10
|
作者
Kim, Hidong [1 ]
Dugerjav, Otgonbayar
Arvisbaatar, Amarmunkh
Seo, Jae M.
机构
[1] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
新加坡国家研究基金会;
关键词
quasi-free-standing epitaxial graphene; doping; band bending; Hubbard band; SiC; silicon; intercalation; SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-PROPERTIES; BILAYER GRAPHENE; 6H-SIC(0001)3 X-3; BUFFER LAYER; SURFACE; GRAPHITE; 4H-SIC(0001); LEED; STM;
D O I
10.1088/1367-2630/17/8/083058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bifunctional effects of the Si atoms intercalated between the n-type 6H-SiC(0001) substrate and the (6 root 3 x6 root 3) R30 degrees zero layer have been disclosed by scanning tunneling microscopy, low-energy electron diffraction, high-resolution synchrotron photoemission spectroscopy and angle-resolved photoemission spectroscopy. As a result of Si intercalation, an ordered Si interfacial layer composed of a Si adlayer and Si adatoms with dangling bonds has been formed under quasi-free-standing epitaxial graphene (EG). It turns out that the SiC(0001) band bending is determined by the Fermi level located close to the lowest states of the upper Hubbard band. The Hubbard bands originate from strong correlation effects of the electrons in the dangling bonds of the Si adatoms ordered on the Si adlayer. The doping level of the decoupled graphene is determined by the amount of charge transferred from the Si adatoms ordered on the Si adlayer to the quasi-free-standing EG.
引用
收藏
页数:15
相关论文
共 36 条
  • [1] Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001)
    Bocquet, F. C.
    Bisson, R.
    Themlin, J. -M.
    Layet, J. -M.
    Angot, T.
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [2] Effects of two kinds of intercalated In films on quasi-free-standing monolayer graphene formed above SiC(0001)
    Kim, Hidong
    Tsogtbaatar, Nyamaa
    Tuvdendorj, Bolortsetseg
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    CARBON, 2020, 159 : 229 - 235
  • [3] Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source
    Wong, Swee Liang
    Huang, Han
    Wang, Yuzhan
    Cao, Liang
    Qi, Dongchen
    Santoso, Iman
    Chen, Wei
    Wee, Andrew Thye Shen
    ACS NANO, 2011, 5 (09) : 7662 - 7668
  • [4] Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation
    Riedl, C.
    Coletti, C.
    Iwasaki, T.
    Zakharov, A. A.
    Starke, U.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [5] The Role of the Charge State of Surface Atoms of a Metal Substrate in Doping of Quasi-Free-Standing Graphene
    S. Yu. Davydov
    A. A. Lebedev
    Yu. V. Lubimova
    Technical Physics Letters, 2018, 44 : 1089 - 1091
  • [6] The Role of the Charge State of Surface Atoms of a Metal Substrate in Doping of Quasi-Free-Standing Graphene
    Davydov, S. Yu.
    Lebedev, A. A.
    Lubimova, Yu. V.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (12) : 1089 - 1091
  • [7] The quasi-free-standing nature of graphene on H-saturated SiC(0001)
    Speck, F.
    Jobst, J.
    Fromm, F.
    Ostler, M.
    Waldmann, D.
    Hundhausen, M.
    Weber, H. B.
    Seyller, Th.
    APPLIED PHYSICS LETTERS, 2011, 99 (12)
  • [8] Formation of quasi-free-standing graphene on SiC(0001) through intercalation of erbium
    Bentley, P. D.
    Bird, T. W.
    Graham, A. P. J.
    Fossberg, O.
    Tear, S. P.
    Pratt, A.
    AIP ADVANCES, 2021, 11 (02)
  • [9] Formation of a quasi-free-standing graphene with a band gap at the dirac point by Pb atoms intercalation under graphene on Re(0001)
    Estyunin, D. A.
    Klimovskikh, I. I.
    Voroshnin, V. Yu.
    Sostina, D. M.
    Petaccia, L.
    Di Santo, G.
    Shikin, A. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2017, 125 (05) : 762 - 767
  • [10] Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces
    Ostler, M.
    Deretzis, I.
    Mammadov, S.
    Giannazzo, F.
    Nicotra, G.
    Spinella, C.
    Seyller, Th.
    La Magna, A.
    PHYSICAL REVIEW B, 2013, 88 (08):