Analytical solutions for the Bohr Hamiltonian with the Woods-Saxon potential

被引:35
|
作者
Capak, M. [1 ]
Petrellis, D. [2 ]
Gonul, B. [1 ]
Bonatsos, Dennis [3 ]
机构
[1] Gaziantep Univ, Dept Engn Phys, TR-27310 Gaziantep, Turkey
[2] Istanbul Univ, Dept Phys, TR-34134 Istanbul, Turkey
[3] Natl Ctr Sci Res Demokritos, Inst Nucl & Particle Phys, GR-15310 Attiki, Greece
关键词
Bohr Hamiltonian; Woods-Saxon potential; Pekeris approximation; QUANTUM PHASE-TRANSITIONS; GENERAL COLLECTIVE MODEL; PEKERIS APPROXIMATION; SCHRODINGER-EQUATION; LIMITING SYMMETRY; NUCLEI; STATES; VIBRATIONS; OS;
D O I
10.1088/0954-3899/42/9/095102
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Approximate analytical solutions in closed form are obtained for the five-dimensional Bohr Hamiltonian with the Woods-Saxon potential, taking advantage of the Pekeris approximation and the exactly solvable one-dimensional extended Woods-Saxon potential with a dip near its surface. Comparison with the data for several gamma-unstable and prolate deformed nuclei indicates that the potential can describe well the ground state and gamma(1) bands of many prolate deformed nuclei corresponding to a large enough 'well size' and diffuseness, while it fails in describing the beta(1) bands, due to its lack of a hard core, as well as in describing gamma-unstable nuclei, because of the small 'well size' and diffuseness they exhibit.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] HALF-LIVES OF HEAVIEST NUCLEI WITH WOODS-SAXON POTENTIAL
    LOJEWSKI, Z
    BARAN, A
    [J]. ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1988, 329 (02): : 161 - 167
  • [42] Parametrization of woods-saxon potential for heavy-ion systems
    Lin Gan
    ZhiHong Li
    HuiBin Sun
    DanYang Pang
    Bing Guo
    YunJu Li
    Jun Su
    ShengQuan Yan
    ErTao Li
    YouBao Wang
    Gang Lian
    ZhiYu Han
    XinYue Li
    DongHui Li
    TianLi Ma
    ChangJin Pei
    YangPing Shen
    Yi Su
    Sheng Zeng
    Yong Zhou
    WeiPing Liu
    [J]. Science China Physics, Mechanics & Astronomy, 2017, 60
  • [43] DISCRETE SYMMETRY OF THE BOUND AND VIRTUAL LEVELS IN THE WOODS-SAXON POTENTIAL
    ORLOV, YV
    NIKITINA, LI
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1989, 49 (03): : 434 - 437
  • [44] Closed Analytical Solutions of the D-Dimensional Schrodinger Equation with Deformed Woods-Saxon Potential Plus Double Ring-Shaped Potential
    Chabab, Mohamed
    El Batoul, Abdelwahed
    Oulne, Mustapha
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (01): : 59 - 68
  • [45] Nuclear prolate-shape dominance with the Woods-Saxon potential
    Takahara, Satoshi
    Tajima, Naoki
    Shimizu, Yoshifumi R.
    [J]. PHYSICAL REVIEW C, 2012, 86 (06):
  • [46] A study of two confined electrons using the Woods-Saxon potential
    Xie, Wenfang
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (11)
  • [47] NEUTRON BOUND S-STATES IN WOODS-SAXON POTENTIAL
    GANGULY, C
    [J]. INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 1970, 44 (04): : 253 - &
  • [48] PHENOMENOLOGICAL WOODS-SAXON POTENTIAL FOR P-SHELL NUCLEI
    GAMBA, S
    RICCO, G
    ROTTIGNI, G
    [J]. NUCLEAR PHYSICS A, 1973, A213 (02) : 383 - 396
  • [49] The Klein-Gordon equation with the Woods-Saxon potential well
    Rojas, C.
    Villalba, V. M.
    [J]. REVISTA MEXICANA DE FISICA, 2006, 52 (03) : 127 - 129
  • [50] Parametrization of woods-saxon potential for heavy-ion systems
    Lin Gan
    ZhiHong Li
    HuiBin Sun
    DanYang Pang
    Bing Guo
    YunJu Li
    Jun Su
    ShengQuan Yan
    ErTao Li
    YouBao Wang
    Gang Lian
    ZhiYu Han
    XinYue Li
    DongHui Li
    TianLi Ma
    ChangJin Pei
    YangPing Shen
    Yi Su
    Sheng Zeng
    Yong Zhou
    WeiPing Liu
    [J]. Science China(Physics,Mechanics & Astronomy), 2017, (08) : 34 - 40