Density functional theory calculations of the energetics and kinetics of set fuel autoxidation reaction

被引:41
|
作者
Zabarnick, S
Phelps, DK
机构
[1] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[2] Univ Dayton, Dept Mech & Aerosp Engn, Dayton, OH 45469 USA
[3] USAF, Res Lab, Propuls Directorate, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1021/ef050348l
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Density functional theory calculations of the energetics and kinetics of important reactions for jet fuel oxidation are reported. The B3LYP functional along with 6-31G(d) and larger basis sets are used for calculation of peroxy radical abstraction reactions from hydrocarbons and heteroatomic species, the reaction of sulfides, disulfides, and phosphines with hydroperoxides to produce nonradical products, and the metal catalysis of hydroperoxide decomposition. Reaction enthalpies and activation energies are determined via DFT calculations of the structures and energies of stable species and transition states. The peroxy radical abstraction study shows the high reactivity (E-a's of 6-11 kcal/mol) of the H atoms which are weakly bonded to heteroatoms, including nitrogen, oxygen, and sulfur. These species, at part-per-million levels, are able to compete for peroxy radicals with the bulk fuel hydrocarbon species. Benzylic hydrogens on aromatic hydrocarbons are shown to be significantly more reactive (by 4 to 5 kcal/mol) than paraffinic hydrogens with the result that the aromatic portion of fuel sustains the bulk of the autoxidation process. Sulfides and disulfides are found to react readily with fuel hydroperoxides (E-a's of 26-29 kcal/mol) to produce alcohols and the oxidized sulfur species. Triphenylphosphine reacts with hydroperoxides with a very low activation energy (12.9 kcal/mol). The metal catalysis of hydroperoxide decomposition is calculated to occur through the formation of a complex with subsequent decomposition to form radical species without regeneration of the metal ion. The reaction pathways found and activation energies calculated can be used to improve chemical kinetic models of fuel autoxidation and deposition.
引用
收藏
页码:488 / 497
页数:10
相关论文
共 50 条
  • [31] Substituting density functional theory in reaction barrier calculations for hydrogen atom transfer in proteins
    Riedmiller, Kai
    Reiser, Patrick
    Bobkova, Elizaveta
    Maltsev, Kiril
    Gryn'ova, Ganna
    Friederich, Pascal
    Graeter, Frauke
    CHEMICAL SCIENCE, 2024, 15 (07) : 2518 - 2527
  • [32] The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
    Tripkovic, Vladimir
    Skulason, Egill
    Siahrostami, Samira
    Norskov, Jens K.
    Rossmeisl, Jan
    ELECTROCHIMICA ACTA, 2010, 55 (27) : 7975 - 7981
  • [33] Density functional theory calculations for F-
    Jarecki, AA
    Davidson, ER
    CHEMICAL PHYSICS LETTERS, 1999, 300 (1-2) : 44 - 52
  • [34] Reproducibility in density functional theory calculations of solids
    Lejaeghere, Kurt
    Bihlmayer, Gustav
    Bjoerkman, Torbjoern
    Blaha, Peter
    Bluegel, Stefan
    Blum, Volker
    Caliste, Damien
    Castelli, Ivano E.
    Clark, Stewart J.
    Dal Corso, Andrea
    de Gironcoli, Stefano
    Deutsch, Thierry
    Dewhurst, John Kay
    Di Marco, Igor
    Draxl, Claudia
    Dulak, Marcin
    Eriksson, Olle
    Flores-Livas, Jose A.
    Garrity, Kevin F.
    Genovese, Luigi
    Giannozzi, Paolo
    Giantomassi, Matteo
    Goedecker, Stefan
    Gonze, Xavier
    Granaes, Oscar
    Gross, E. K. U.
    Gulans, Andris
    Gygi, Francois
    Hamann, D. R.
    Hasnip, Phil J.
    Holzwarth, N. A. W.
    Iusan, Diana
    Jochym, Dominik B.
    Jollet, Francois
    Jones, Daniel
    Kresse, Georg
    Koepernik, Klaus
    Kuecuekbenli, Emine
    Kvashnin, Yaroslav O.
    Locht, Inka L. M.
    Lubeck, Sven
    Marsman, Martijn
    Marzari, Nicola
    Nitzsche, Ulrike
    Nordstrom, Lars
    Ozaki, Taisuke
    Paulatto, Lorenzo
    Pickard, Chris J.
    Poelmans, Ward
    Probert, Matt I. J.
    SCIENCE, 2016, 351 (6280)
  • [35] Density functional theory calculations for mercury fulminate
    Türker, L
    Erkoç, S
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2004, 712 (1-3): : 139 - 142
  • [36] The Elephant in the Room of Density Functional Theory Calculations
    Jensen, Stig Rune
    Saha, Santanu
    Flores-Livas, Jose A.
    Huhn, William
    Blum, Volker
    Goedecker, Stefan
    Frediani, Luca
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (07): : 1449 - 1457
  • [37] Density Functional Theory (DFT) Calculations and Catalysis
    Lee, Yong-Kul
    CATALYSTS, 2021, 11 (04)
  • [38] Microhartree precision in density functional theory calculations
    Gulans, Andris
    Kozhevnikov, Anton
    Draxl, Claudia
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [39] Density Functional Theory Calculations on Polyacene Molecules
    Pekoz, Rengin
    Erkoc, Sakir
    ADVANCED SCIENCE LETTERS, 2010, 3 (01) : 43 - 48
  • [40] Oxidative Degradation of Decabromodiphenyl Ether (BDE 209) by Potassium Permanganate: Reaction Pathways, Kinetics, and Mechanisms Assisted by Density Functional Theory Calculations
    Shi, Jiaqi
    Qu, Ruijuan
    Feng, Mingbao
    Wang, Xinghao
    Wang, Liansheng
    Yang, Shaogui
    Wang, Zunyao
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (07) : 4209 - 4217