Modeling Epistasis in Genomic Selection

被引:170
|
作者
Jiang, Yong [1 ]
Reif, Jochen C. [1 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Breeding Res, D-06466 Stadt Seeland, Germany
关键词
epistasis; genomic selection; genomic best linear unbiased prediction (G-BLUP); extended G-BLUP (EG-BLUP); reproducing kernel Hilbert space regression (RKHS); GenPred; shared data resource; QUANTITATIVE TRAIT LOCI; GENETIC VALUES; BREEDING POPULATIONS; ASSISTED PREDICTION; ENABLED PREDICTION; WIDE ASSOCIATION; MAIZE; WHEAT; ARCHITECTURE; MARKERS;
D O I
10.1534/genetics.115.177907
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species.
引用
收藏
页码:759 / +
页数:15
相关论文
共 50 条
  • [41] Genomic selection
    Fernando, R. L.
    Habier, D.
    Stricker, C.
    Dekkers, J. C. M.
    Totir, L. R.
    ACTA AGRICULTURAE SCANDINAVICA SECTION A-ANIMAL SCIENCE, 2007, 57 (04): : 192 - 195
  • [42] Genomic selection
    Goddard, M. E.
    Hayes, B. J.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) : 323 - 330
  • [43] Epistasis-Induced Evolutionary Plateaus in Selection Responses
    Le Rouzic, Arnaud
    Alvarez-Castro, Jose M.
    AMERICAN NATURALIST, 2016, 188 (06): : E134 - E150
  • [44] SIMULATING OF SELECTION MODELS INVOLVING LINKAGE EPISTASIS + INBREEDING
    JAIN, SK
    ALLARD, RW
    GENETICS, 1964, 50 (02) : 259 - &
  • [45] EFFECT ON LINKAGE DISEQUILIBRIUM OF SELECTION FOR A QUANTITATIVE CHARACTER WITH EPISTASIS
    MUELLER, JP
    JAMES, JW
    THEORETICAL AND APPLIED GENETICS, 1983, 65 (01) : 25 - 30
  • [46] A simulated annealing approach to subset selection for the identification of epistasis
    Wilcox, MA
    Patel, N
    Faraone, SV
    Su, J
    Tsuang, MT
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (07): : 643 - 643
  • [47] Modeling first order additive x additive epistasis improves accuracy of genomic prediction for sclerotinia stem rot resistance in canola
    Derbyshire, Mark C.
    Khentry, Yuphin
    Severn-Ellis, Anita
    Mwape, Virginia
    Saad, Nur Shuhadah Mohd
    Newman, Toby E.
    Taiwo, Akeem
    Regmi, Roshan
    Buchwaldt, Lone
    Denton-Giles, Matthew
    Batley, Jacqueline
    Kamphuis, Lars G.
    PLANT GENOME, 2021, 14 (02):
  • [48] Inferring epistasis from genomic data with comparable mutation and outcrossing rate
    Zeng, Hong-Li
    Mauri, Eugenio
    Dichio, Vito
    Cocco, Simona
    Monasson, Remi
    Aurell, Erik
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (08):
  • [49] Genomic prediction through machine learning and neural networks for traits with epistasis
    Costa, Weverton Gomes da
    Celeri, Mauricio de Oliveira
    Barbosa, Ivan de Paiva
    Silva, Gabi Nunes
    Azevedo, Camila Ferreira
    Borem, Aluizio
    Nascimento, Moyses
    Cruz, Cosme Damiao
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5490 - 5499
  • [50] Selection for cooperativity causes epistasis predominately between native contacts and enables epistasis-based structure reconstruction
    Eccleston, R. Charlotte
    Pollock, David D.
    Goldstein, Richard A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (16)