Modeling Epistasis in Genomic Selection

被引:170
|
作者
Jiang, Yong [1 ]
Reif, Jochen C. [1 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Breeding Res, D-06466 Stadt Seeland, Germany
关键词
epistasis; genomic selection; genomic best linear unbiased prediction (G-BLUP); extended G-BLUP (EG-BLUP); reproducing kernel Hilbert space regression (RKHS); GenPred; shared data resource; QUANTITATIVE TRAIT LOCI; GENETIC VALUES; BREEDING POPULATIONS; ASSISTED PREDICTION; ENABLED PREDICTION; WIDE ASSOCIATION; MAIZE; WHEAT; ARCHITECTURE; MARKERS;
D O I
10.1534/genetics.115.177907
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species.
引用
收藏
页码:759 / +
页数:15
相关论文
共 50 条
  • [1] Epistasis Detection and Modeling for Genomic Selection in Cowpea (Vigna unguiculata L. Walp.)
    Olatoye, Marcus O.
    Hu, Zhenbin
    Aikpokpodion, Peter O.
    FRONTIERS IN GENETICS, 2019, 10
  • [2] Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models
    Schrauf, Matias F.
    Martini, Johannes W. R.
    Simianer, Henner
    de los Campos, Gustavo
    Cantet, Rodolfo
    Freudenthal, Jan
    Korte, Arthur
    Munilla, Sebastian
    G3-GENES GENOMES GENETICS, 2020, 10 (09): : 3137 - 3145
  • [3] Influence of epistasis on response to genomic selection using complete sequence data
    Forneris, Natalia S.
    Vitezica, Zulma G.
    Legarra, Andres
    Perez-Enciso, Miguel
    GENETICS SELECTION EVOLUTION, 2017, 49
  • [4] Influence of epistasis on response to genomic selection using complete sequence data
    Natalia S. Forneris
    Zulma G. Vitezica
    Andres Legarra
    Miguel Pérez-Enciso
    Genetics Selection Evolution, 49
  • [5] Epistasis correlates to genomic complexity
    Sanjuan, Rafael
    Elena, Santiago F.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (39) : 14402 - 14405
  • [6] Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis
    Ali, Mohsin
    Zhang, Luyan
    DeLacy, Ian
    Arief, Vivi
    Dieters, Mark
    Pfeiffer, Wolfgang H.
    Wang, Jiankang
    Li, Huihui
    CROP JOURNAL, 2020, 8 (05): : 866 - 877
  • [7] Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis
    Mohsin Ali
    Luyan Zhang
    Ian De Lacy
    Vivi Arief
    Mark Dieters
    Wolfgang H.Pfeiffer
    Jiankang Wang
    Huihui Li
    The Crop Journal, 2020, 8 (05) : 866 - 877
  • [8] Symbolic modeling of epistasis
    Moore, Jason H.
    Barney, Nate
    Tsai, Chia-Ti
    Chiang, Fu-Tien
    Gui, Jiang
    White, Bill C.
    HUMAN HEREDITY, 2007, 63 (02) : 120 - 133
  • [9] Symbolic modeling of epistasis
    Moore, J. H.
    Barney, N.
    Tsai, C.-T.
    Chiang, F.-T.
    White, B. C.
    GENETIC EPIDEMIOLOGY, 2007, 31 (05) : 490 - 490
  • [10] Epistasis in genomic and survival data of cancer patients
    Matlak, Dariusz
    Szczurek, Ewa
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)