A Wigner distribution function for finite oscillator systems

被引:6
|
作者
Van der Jeugt, J. [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
D O I
10.1088/1751-8113/46/47/475302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum. The distribution function is thus defined on discrete phase-space, i.e. on a finite discrete square grid. These discrete Wigner functions possess a number of properties similar to the Wigner function for a continuous quantum system such as the quantum harmonic oscillator. As an example, we consider the so-called su(2) oscillator model in dimension 2j+1, which is known to tend to the canonical oscillator when j tends to infinity. In particular, we compare plots of our discrete Wigner functions for the su(2) oscillator with the well known plots of Wigner functions for the canonical quantum oscillator. This comparison supports our approach to discrete-Wigner functions.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dynamics of the τ-Wigner distribution function
    Spisak, B. J.
    Wozniak, D.
    Kolaczek, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)
  • [32] Fractional Wigner distribution function
    Dragoman, D.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13 (03): : 474 - 478
  • [33] THE GENERALIZED WIGNER DISTRIBUTION FUNCTION
    IAFRATE, GJ
    GRUBIN, HL
    FERRY, DK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 458 - 459
  • [34] OSCILLATORY STRUCTURE OF THE HARMONIC-OSCILLATOR WIGNER FUNCTION
    ROWLEY, N
    PRAKASH, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (14): : 3219 - 3236
  • [35] Wigner function description of a qubit-oscillator system
    Allen, James
    Zagoskin, A. M.
    LOW TEMPERATURE PHYSICS, 2013, 39 (03) : 289 - 293
  • [36] Wigner function description of a qubit-oscillator system
    Allen, J., 1600, Institute for Low Temperature Physics and Engineering (39):
  • [37] Wigner distribution for random systems
    Galleani, L
    Cohen, L
    JOURNAL OF MODERN OPTICS, 2002, 49 (14-15) : 2657 - 2665
  • [38] Extended Wigner function for the harmonic oscillator in the phase space
    Perepelkin, E. E.
    Sadovnikov, B., I
    Inozemtseva, N. G.
    Burlakov, E., V
    RESULTS IN PHYSICS, 2020, 19
  • [39] Harmonic oscillator Wigner function extension to exceptional polynomials
    K V S Shiv Chaitanya
    Pramana, 2018, 91
  • [40] Harmonic oscillator Wigner function extension to exceptional polynomials
    Chaitanya, K. V. S. Shiv
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (03):