A Wigner distribution function for finite oscillator systems

被引:6
|
作者
Van der Jeugt, J. [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
D O I
10.1088/1751-8113/46/47/475302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum. The distribution function is thus defined on discrete phase-space, i.e. on a finite discrete square grid. These discrete Wigner functions possess a number of properties similar to the Wigner function for a continuous quantum system such as the quantum harmonic oscillator. As an example, we consider the so-called su(2) oscillator model in dimension 2j+1, which is known to tend to the canonical oscillator when j tends to infinity. In particular, we compare plots of our discrete Wigner functions for the su(2) oscillator with the well known plots of Wigner functions for the canonical quantum oscillator. This comparison supports our approach to discrete-Wigner functions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Wigner distribution function for finite systems
    Atakishiyev, NM
    Chumakov, SM
    Wolf, KB
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6247 - 6261
  • [2] WIGNER DISTRIBUTION FUNCTION FOR AN OSCILLATOR
    DAVIES, RW
    DAVIES, KTR
    ANNALS OF PHYSICS, 1975, 89 (02) : 261 - 273
  • [3] The Wigner distribution function for the su(2) finite oscillator and Dyck paths
    Oste, Roy
    Van der Jeugt, Joris
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (28)
  • [4] Wigner distribution function for finite signals
    Wolf, KB
    Atakishiyev, NM
    Chumakov, SM
    PHOTONIC QUANTUM COMPUTING, 1997, 3076 : 196 - 206
  • [5] Mapping the Wigner distribution function of the Morse oscillator onto a semiclassical distribution function
    Bund, GW
    Tijero, MC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11): : 3687 - 3698
  • [6] Wigner Function and Non-classicality for Oscillator Systems
    H. Dessano
    R. A. S. Paiva
    R. G. G. Amorim
    S. C. Ulhoa
    A. E. Santana
    Brazilian Journal of Physics, 2019, 49 : 715 - 725
  • [7] Wigner Function and Non-classicality for Oscillator Systems
    Dessano, H.
    Paiva, R. A. S.
    Amorim, R. G. G.
    Ulhoa, S. C.
    Santana, A. E.
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (05) : 715 - 725
  • [8] Wigner distribution function for Euclidean systems
    Nieto, LM
    Atakishiyev, NM
    Chumakov, SM
    Wolf, KB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16): : 3875 - 3895
  • [9] Wigner distribution function for Euclidean systems
    Nieto, L. M.
    Atakishiyev, N. M.
    Chumakov, S. M.
    Wolf, K. B.
    Journal of Physics A: Mathematical and General, 31 (16):
  • [10] The Wigner distribution function for the one-dimensional parabose oscillator
    Jafarov, E.
    Lievens, S.
    Van der Jeugt, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)