DIRAC EQUATION IN NON-RIEMANNIAN GEOMETRIES

被引:7
|
作者
Formiga, J. B. [1 ]
Romero, C. [2 ]
机构
[1] Univ Estadual Piaui, Ctr Ciencias Nat, BR-64002150 Teresina, Brazil
[2] Univ Fed Paraiba, Dept Fis, BR-58005197 Joao Pessoa, Paraiba, Brazil
关键词
Dirac equation; non-Riemannian geometry; minimal coupling procedure; SPIN-CONNECTION; TORSION;
D O I
10.1142/S0219887813200120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the Dirac equation in a geometry with torsion and non-metricity balancing generality and simplicity as much as possible. In doing so, we use the vielbein formalism and the Clifford algebra. We also use an index-free formalism which allows us to construct objects that are totally invariant. It turns out that the previous apparatuses not only make possible a simple deduction of the Dirac equation but also allow us to exhibit some details that is generally obscure in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Status of non-Riemannian cosmology
    Puetzfeld, D
    NEW ASTRONOMY REVIEWS, 2005, 49 (2-6) : 59 - 64
  • [22] Quadratic non-riemannian gravity
    Vassiliev D.
    Journal of Nonlinear Mathematical Physics, 2004, 11 (Suppl 1) : 204 - 216
  • [23] KRONS NON-RIEMANNIAN ELECTRODYNAMICS
    HOFFMANN, B
    REVIEWS OF MODERN PHYSICS, 1949, 21 (03) : 535 - 540
  • [24] Brane world in non-Riemannian geometry
    Maier, R.
    Falciano, F. T.
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [25] On the chiral anomaly in non-Riemannian spacetimes
    Obukhov, YN
    Mielke, EW
    Budczies, J
    Hehl, FW
    FOUNDATIONS OF PHYSICS, 1997, 27 (09) : 1221 - 1236
  • [26] Probing non-Riemannian spacetime geometry
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICS LETTERS A, 2008, 372 (45) : 6711 - 6716
  • [27] FINSLER MANIFOLDS WITH NON-RIEMANNIAN HOLONOMY
    Muzsnay, Zoltan
    Nagy, Peter T.
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 77 - 92
  • [28] GENERALIZED STRESS AND NON-RIEMANNIAN GEOMETRY
    BENABRAH.SI
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1969, A 73 (05): : 527 - +
  • [29] Identifying Riemannian Singularities with Regular Non-Riemannian Geometry
    Morand, Kevin
    Park, Jeong-Hyuck
    Park, Miok
    PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [30] String Theory and Non-Riemannian Geometry
    Park, Jeong-Hyuck
    Sugimoto, Shigeki
    PHYSICAL REVIEW LETTERS, 2020, 125 (21)