Integration over families of Lagrangian submanifolds in BV formalism

被引:4
|
作者
Mikhailov, Andrei [1 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
BATALIN-VILKOVISKY FORMALISM;
D O I
10.1016/j.nuclphysb.2018.01.006
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:107 / 159
页数:53
相关论文
共 50 条
  • [41] GENERATING FORMS OF LAGRANGIAN SUBMANIFOLDS
    SNIATYCK.JZ
    TULCZYJE.WM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A376 - A376
  • [42] Deformations of special Lagrangian submanifolds
    Salur, S
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) : 365 - 372
  • [43] Quantization of complex Lagrangian submanifolds
    D'Agnolo, Andrea
    Schapira, Pierre
    ADVANCES IN MATHEMATICS, 2007, 213 (01) : 358 - 379
  • [44] On an inequality of Oprea for Lagrangian submanifolds
    Dillen, Franki
    Fastenakels, Johan
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (01): : 140 - 144
  • [45] SYMPLECTIC MANIFOLDS AND THEIR LAGRANGIAN SUBMANIFOLDS
    WEINSTEIN, A
    ADVANCES IN MATHEMATICS, 1971, 6 (03) : 329 - +
  • [46] ON THE TOPOLOGY OF MONOTONE LAGRANGIAN SUBMANIFOLDS
    Damian, Mihai
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (01): : 237 - 252
  • [47] Lagrangian submanifolds at infinity and their parametrization
    Coriasco, Sandro
    Schulz, Rene
    JOURNAL OF SYMPLECTIC GEOMETRY, 2017, 15 (04) : 937 - 982
  • [48] CONSTRUCTION OF LAGRANGIAN SUBMANIFOLDS IN CPn
    Chen, Qing
    Hu, Sen
    Xu, Xiaowei
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 258 (01) : 31 - 49
  • [49] New Lagrangian submanifolds of CPn
    Chiang, R
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (45) : 2437 - 2441
  • [50] ON LAGRANGIAN AND HAMILTONIAN FORMALISM
    NAMBU, Y
    PROGRESS OF THEORETICAL PHYSICS, 1952, 7 (02): : 131 - 170