Evaluation of Ensemble-based Sentiment Classifiers for Twitter Data

被引:0
|
作者
Troussas, Christos [1 ]
Krouska, Akrivi [1 ]
Virvou, Maria [1 ]
机构
[1] Univ Piraeus, Dept Informat, Software Engn Lab, Piraeus, Greece
关键词
Ensembles; Bagging; Boosting; Stacking; Voting; Sentiment Analysis; Twitter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media are widely used worldwide and offer the possibility to users to post real time messages respecting their opinions on different topics, discuss everyday issues, complain and express positive, neutral or negative sentiments for anything that concerns them. As such, sentiment analysis has become a burning issue in the scientific literature. However, some researchers argue that Twitter sentiment classification performance may be elusive. To overcome this issue, in this paper, we evaluate the most common ensemble methods that can be used for effective sentiment analysis and the tested datasets used in this research proceed from Twitter. Experiment results reveal that the use of ensembles of multiple base classifiers can improve the accuracy of Twitter sentiment analysis. The discussion that is presented can clearly prove that such methods can surprisingly surpass the traditional algorithms in performance and can be seen as a beneficial tool in the field of sentiment analysis that can further enhance several other domains such as e-learning and web advertising.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers
    Cam, Handan
    Cam, Alper Veli
    Demirel, Ugur
    Ahmed, Sana
    HELIYON, 2024, 10 (01)
  • [22] Ensemble-based data assimilation with curvelets regularization
    Zhang, Yanhui
    Oliver, Dean S.
    Chauris, Herve
    Donno, Daniela
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 136 : 55 - 67
  • [23] Ensemble-based data assimilation and the localisation problem
    Petrie, Ruth E.
    Dance, Sarah L.
    WEATHER, 2010, 65 (03) : 65 - 69
  • [24] An approach to localization for ensemble-based data assimilation
    Wang, Bin
    Liu, Juanjuan
    Liu, Li
    Xu, Shiming
    Huang, Wenyu
    PLOS ONE, 2018, 13 (01):
  • [25] Ensemble-based evaluation for protein structure models
    Jamroz, Michal
    Kolinski, Andrzej
    Kihara, Daisuke
    BIOINFORMATICS, 2016, 32 (12) : 314 - 321
  • [26] Event Based Sentiment Analysis of Twitter Data
    Patil, Mamta
    Chavan, H. K.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2018), 2018, : 1041 - 1054
  • [27] Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers
    Ruz, Gonzalo A.
    Henriquez, Pablo A.
    Mascareno, Aldo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 106 : 92 - 104
  • [28] Cascading Classifiers for Twitter Sentiment Analysis with Emotion Lexicons
    Calvo, Hiram
    Juarez Gambino, Omar
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 270 - 280
  • [29] Twitter Sentiment Analysis: A Bootstrap Ensemble Framework
    Hassan, Ammar
    Abbasi, Ahmed
    Zeng, Daniel
    2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM), 2013, : 357 - 364
  • [30] Experimental evaluation of ensemble classifiers for imbalance in Big Data
    Juez-Gil M.
    Arnaiz-González Á.
    Rodríguez J.J.
    García-Osorio C.
    Applied Soft Computing, 2021, 108