Incremental Learning Based on Anchored Class Centers for SAR Automatic Target Recognition

被引:20
|
作者
Li, Bin [1 ]
Cui, Zongyong [1 ]
Cao, Zongjie [1 ]
Yang, Jianyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Synthetic aperture radar; Measurement; Training; Target recognition; Azimuth; Computational modeling; Adaptation models; Catastrophic forgetting; class anchor clustering (CAC); incremental learning; synthetic aperture radar automatic target recognition (SAR ATR);
D O I
10.1109/TGRS.2022.3208346
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Although deep learning methods have achieved great success in synthetic aperture radar automatic target recognition (SAR ATR), their accuracies decline sharply, as new classes are learned, which is known as catastrophic forgetting. The overlapping or confusion between the representations of new and old classes in the feature space is the main cause of catastrophic forgetting. In this article, the incremental class anchor clustering (ICAC) is proposed to address this issue. ICAC solves this problem from three perspectives: 1) how to learn the new classes; 2) how to enable the model to recognize and classify the old classes; and 3) how to solve the imbalance between old classes and new classes. To learn the new classes, ICAC adaptively adds new anchored class centers for new classes, and the features of each new class will be clustered around the corresponding anchored class center. To enable the model to recognize and classify the old classes, ICAC stores some exemplars for the old classes to ensure the classification ability of the old classes without losing the old class centers in the feature space. At the same time, ICAC adopts knowledge distillation to further alleviate catastrophic forgetting. To solve the imbalance between old classes and new classes, ICAC proposes a learning strategy named separable learning (SL), which computes the losses of the old and new exemplars separately and then adds the two losses to make a gradient descent. Experiments on the moving and stationary target acquisition and recognition (MSTAR) dataset and the OpenSARShip dataset demonstrate the effectiveness of this method in SAR ATR.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] SAR Automatic Target Recognition Based on Deep Convolutional Neural Networks
    Zhan, Rong-hui
    Tian, Zhuang-zhuang
    Hu, Jie-min
    Zhang, Jun
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016, 2016, : 170 - 178
  • [42] Automatic Target Recognition for SAR Images Based on Fuzzy Logic Systems
    Feng, Xuhong
    Liang, Qilian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 759 - 765
  • [43] L2,1-Constrained Deep Incremental NMF Approach for SAR Automatic Target Recognition
    Cao, Changjie
    Chou, Ran
    Zhang, Hanyue
    Li, Xian
    Luo, Tangyun
    Liu, Bingli
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [44] Class Hierarchy Aware Contrastive Feature Learning for Multigranularity SAR Target Recognition
    Wen, Zaidao
    Wang, Zikai
    Zhang, Jianting
    Lv, Yafei
    Wu, Qian
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (06) : 7962 - 7977
  • [45] SAR Target Recognition with Deep Learning
    Soldin, Ryan J.
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [46] Learning Capsules for SAR Target Recognition
    Guo, Yunrui
    Pan, Zongxu
    Wang, Meiming
    Wang, Ji
    Yang, Wenjing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (4663-4673) : 4663 - 4673
  • [47] SAR Target Recognition Based on Probabilistic Meta-Learning
    Wang, Ke
    Zhang, Gong
    Xu, Yanbing
    Leung, Henry
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (04) : 682 - 686
  • [48] SAR Target Recognition Based on Enhanced Discriminant Feature Learning
    Guo, Jun
    Wang, Ling
    Zhu, Daiyin
    Hu, Changyu
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 1094 - 1098
  • [49] Incremental learning using feature labels for synthetic aperture radar automatic target recognition
    Hu, Chao
    Hao, Ming
    Wang, Wenying
    Yang, Yong
    Wu, Daoqing
    IET RADAR SONAR AND NAVIGATION, 2022, 16 (11): : 1872 - 1880
  • [50] Few-Shot Class-Incremental SAR Target Recognition via Orthogonal Distributed Features
    Kong, Lingzhe
    Gao, Fei
    He, Xiaoyu
    Wang, Jun
    Sun, Jinping
    Zhou, Huiyu
    Hussain, Amir
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (01) : 325 - 341