A min-max relation on packing feedback vertex sets

被引:0
|
作者
Chen, XJ
Ding, GL
Hu, HD
Zang, WN
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
来源
ALGORITHMS AND COMPUTATION | 2005年 / 3827卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C be a graph with a nonnegative integral function w defined on V(G). A family F of subsets of V(G) (repetition is allowed) is called a feedback vertex set Packing in G if the removal of any member of F from G leaves a forest, and every vertex v is an element of V(G) is contained in at most w(v) members of T. The weight of a cycle C in G is the sum of w(v), over all vertices v of C. In this paper we characterize all graphs with the property that, for any nonnegative integral function w, the maximum cardinality of a feedback vertex set packing is equal to the minimum weight of a cycle.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [21] The interval min-max regret knapsack packing-delivery problem
    Wang, Shijin
    Cui, Wenli
    Chu, Feng
    Yu, Jianbo
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (18) : 5661 - 5677
  • [22] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [23] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [24] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [25] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [26] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [27] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [28] CLASS OF OUTPUT-FEEDBACK CONTROLLERS AND MIN-MAX DESIGN
    ZOHDY, MA
    APLEVICH, JD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) : 614 - 615
  • [29] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [30] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192