A min-max relation on packing feedback vertex sets

被引:0
|
作者
Chen, XJ
Ding, GL
Hu, HD
Zang, WN
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
来源
ALGORITHMS AND COMPUTATION | 2005年 / 3827卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let C be a graph with a nonnegative integral function w defined on V(G). A family F of subsets of V(G) (repetition is allowed) is called a feedback vertex set Packing in G if the removal of any member of F from G leaves a forest, and every vertex v is an element of V(G) is contained in at most w(v) members of T. The weight of a cycle C in G is the sum of w(v), over all vertices v of C. In this paper we characterize all graphs with the property that, for any nonnegative integral function w, the maximum cardinality of a feedback vertex set packing is equal to the minimum weight of a cycle.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [1] A min-max relation on packing feedback vertex sets
    Chen, Xujin
    Ding, Guoli
    Hu, Xiaodong
    Zang, Wenan
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (04) : 777 - 788
  • [2] A min-max theorem on feedback vertex sets
    Cai, MC
    Deng, XT
    Zang, WN
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (02) : 361 - 371
  • [3] A min-max theorem on feedback vertex sets (Preliminary version)
    Cai, MC
    Deng, XT
    Zang, WN
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 73 - 86
  • [5] A WEIGHTED MIN-MAX RELATION FOR INTERVALS
    LUBIW, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 53 (02) : 151 - 172
  • [6] A min-max relation in flowgraphs and some applications
    Ferreira, Carlos Eduardo
    Pereira Franco, Alvaro Junio
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 245 : 65 - 76
  • [7] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348
  • [8] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [9] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    [J]. Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [10] Medial axis and optimal locations for min-max sphere packing
    Wang, J
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (04) : 487 - 503