Recent advances in continuously tunable 8-12 mu m radiation using optical parametric oscillators

被引:2
|
作者
Allik, TH
Chandra, S
机构
关键词
optical parametric oscillators; 8-12 mu m laser sources; LIDAR laser technology;
D O I
10.1117/12.280935
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Advances in the development of crystals with good nonlinear properties have made optical parametric oscillators (OPOs) strong candidates for generation of coherent radiation. These technological advancements have renewed research in the development of solid state 8 - 12 mu m coherent OPO LIDAR sources for remote chemical sensing applications, if millijoule pulse energies are adequate and short (ns) pulses are beneficial. We present recent advances in OPO technology that have generated tunable, 3 - 5 mu m and 8 - 12 mu m radiation. Specific pump source technologies to be addressed are CO2, Nd:YAG, Er and Ho:host materials. The paper will examine nonlinear materials such as ZnGeP2, AgGaSe2, AgGaS2, and CdSe and their relevant parameters. The authors will discuss their results to obtain millijoule/pulse OPO energies with two different pump sources. Using a 25 mi, 50 ns, 2.79 mu m Cr,Er:YSGG laser to pump CdSe and ZnGeP2 OPOs, signal wavelengths from 3.6 - 4.7 mu m and idler wavelengths from 6.9 - 12.7 mu m were generated. A CdSe OPO yielded a 59% slope efficiency (eta) and 1.2 - 2.4 mi idler output between 8.5 and 12.3 mu M. A ZnGeP2 OPO operated with a lower threshold, eta = 29%, and 0.7 - 2.4 mi idler output from 6.9 to 9.9 mu M. Secondly, a non-critically phase-matched KTP OPO, at the fixed wavelength of 1.57 mu m, was used to pump a type I AgGaSe2 OPO. A 6.5 mm x 6.5 mm x 35.3 mn long, AgGaSe2 crystal yielded output, tunable from 6 to 14 mu m, with energies of up to 1.2 ml/pulse and a bandwidth of similar to 5 cm(-1) (FWHM).
引用
收藏
页码:54 / 64
页数:11
相关论文
共 50 条
  • [21] TELLURIUM HALIDE GLASSES - NEW MATERIALS FOR TRANSMISSION IN THE 8-12 MU-M RANGE
    ZHANG, XH
    FONTENEAU, G
    LUCAS, J
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) : 38 - 44
  • [22] Generation of continuously tunable, 5-12 μm radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP2 crystal
    Haidar, S
    Miyamoto, K
    Ito, H
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (23) : 3347 - 3349
  • [23] Mercury thiogallate nanosecond optical parametric oscillator continuously tunable from 4.2 to 10.8 μm
    Kostyukova, N. Yu
    Kolker, D. B.
    Zenov, K. G.
    Boyko, A. A.
    Starikova, M. K.
    Sherstov, I. V.
    Karapuzikov, A. A.
    [J]. LASER PHYSICS LETTERS, 2015, 12 (09)
  • [24] AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm
    Vodopyanov, KL
    Maffetone, JP
    Zwieback, I
    Ruderman, W
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (09) : 1204 - 1206
  • [25] Recent progress in superlattice materials and 8-12 μm quantum well infrared detectors
    Chen, Shida
    [J]. Hongwai jishu, 1993, 15 (02): : 1 - 5
  • [26] The angular behavior of emitted thermal infrared radiation (8-12 μm) at a semiarid site
    McAtee, BK
    Prata, AJ
    Lynch, MJ
    [J]. JOURNAL OF APPLIED METEOROLOGY, 2003, 42 (08): : 1060 - 1071
  • [27] Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide
    O'Donnell, Callum F.
    Kumar, S. Chaitanya
    Schunemann, P. G.
    Ebrahim-Zadeh, M.
    [J]. OPTICS LETTERS, 2019, 44 (18) : 4570 - 4573
  • [28] Tunable femtosecond optical parametric oscillators resonating at 0.65-1.02?m and 1.07-2.3?m
    Heng, Jiaxing
    Zhang, Rui
    Qin, Mengke
    Zhang, Zhaowei
    [J]. OPTICS LETTERS, 2023, 48 (08) : 2082 - 2085
  • [29] TEMPERATURE-DEPENDENCE OF INTENSITIES OF THE 8-12 MU-M BANDS OF CFCL3
    NANES, R
    SILVAGGIO, PM
    BOESE, RW
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1980, 23 (02): : 211 - 220
  • [30] BAND MODEL-CALCULATIONS FOR CFCL3 IN THE 8-12 MU-M REGION
    SILVAGGIO, PM
    BOESE, RW
    NANES, R
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1980, 23 (02): : 221 - 227