Numerical Stability of Inverse Simulation Algorithms Applied to Planetary Rover Navigation

被引:0
|
作者
Flessa, Thaleia [1 ]
McGookin, Euan [1 ]
Thomson, Douglas [1 ]
机构
[1] Univ Glasgow, Sch Engn, Div Aerosp Sci, Glasgow, Lanark, Scotland
关键词
MARS EXPLORATION ROVERS; FUTURE; FLIGHT; TOOL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extending the navigational capability of planetary rovers is essential for increasing the scientific outputs from such exploratory missions. In this paper a navigation method based on Inverse Simulation is applied to a four wheel rover. The method calculates the required control inputs to achieve a desired, specified response. Here this is a desired trajectory defined as a series of waypoints. Inverse Simulation considers the complete system dynamics of the rover to calculate the control input using an iterative, numerical Newton - Raphson scheme. The paper provides an insight into the numerical parameters that affect the performance of the method. Also, the influence of varying the timestep and the convergence tolerance is examined in terms of the quality of the calculated control input and the resulting trajectory, as well as the execution time. From this analysis a set of parameters and recommendations to successfully apply Inverse Simulation to a rover is presented.
引用
收藏
页码:901 / 906
页数:6
相关论文
共 50 条
  • [21] Enabling Continuous Planetary Rover Navigation through FPGA Stereo and Visual Odometry
    Howard, Thomas M.
    Morfopoulos, Arin
    Morrison, Jack
    Kuwata, Yoshiaki
    Villalpando, Carlos
    Matthies, Larry
    McHenry, Michael
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [22] Rover autonomy for long range navigation and science data acquisition on planetary surfaces
    Huntsberger, T
    Aghazarian, H
    Cheng, Y
    Baumgartner, ET
    Tunstel, E
    Leger, C
    Trebi-Ollennu, A
    Schenker, PS
    2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 3161 - 3168
  • [23] Rover-IRL: Inverse Reinforcement Learning With Soft Value Iteration Networks for Planetary Rover Path Planning
    Pflueger, Max
    Agha, Ali
    Sukhatme, Gaurav S.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02): : 1387 - 1394
  • [24] Training a terrain traversability classifier for a planetary rover through simulation
    Hewitt, Robert A.
    Ellery, Alex
    de Ruiter, Anton
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (05): : 1 - 14
  • [25] Rover Inverse Simulation Using a Segmented Model Approach
    Shilliday, S. R. K.
    McGookin, E. W.
    Thomson, D. G.
    IFAC PAPERSONLINE, 2023, 56 (02): : 6820 - 6825
  • [26] Numerical simulation of the magnetic permeability applied to ferrites using genetic algorithms
    Boggi, Silvina
    Razzitte, Adrian C.
    Fano, Walter G.
    2014 IEEE BIENNIAL CONGRESS OF ARGENTINA (ARGENCON), 2014, : 202 - 206
  • [27] A method for on-line soil parameters modification to planetary rover simulation
    Gao, Haibo
    Li, Weihua
    Ding, Liang
    Deng, Zongquan
    Liu, Zhen
    JOURNAL OF TERRAMECHANICS, 2012, 49 (06) : 325 - 339
  • [28] Testing algorithms for inverse simulation
    Czechowski, Piotr P.
    Giovannini, Leonardo
    Ordys, Andrzej W.
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1662 - +
  • [29] RLROVERLAB: An Advanced Reinforcement Learning Suite for Planetary Rover Simulation and Training
    Mortensen, Anton Bjorndahl
    Bogh, Simon
    2024 INTERNATIONAL CONFERENCE ON SPACE ROBOTICS, ISPARO, 2024, : 273 - 277
  • [30] Wheel-terrain contact modeling in the roams planetary rover simulation
    Sohl, Garett
    Jain, Abhinandan
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 89 - 97