Decision tree classifiers for evidential attribute values and class labels

被引:52
|
作者
Trabelsi, Asma [1 ,2 ]
Elouedi, Zied [1 ]
Lefevre, Eric [2 ]
机构
[1] Univ Tunis, Inst Super Gest Tunis, LARODEC, Tunis, Tunisia
[2] Univ Artois, EA 3926, Lab Genie Informat & Automat Artois LGI2A, F-62400 Bethune, France
关键词
Decision tree classifier; Imperfect data; Evidence theory; TRANSFERABLE BELIEF MODEL; COMBINATION; ASSOCIATION;
D O I
10.1016/j.fss.2018.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Decision trees are well-known machine learning techniques for solving complex classification problems. Despite their great success, the standard decision tree algorithms do not have the ability to process imperfect knowledge, meaning uncertain, imprecise and incomplete data. In this paper, we develop new decision tree approaches to cope with data that have uncertain attribute values and class labels. More concretely, we tackle the case where the uncertainty is represented and managed through the evidence theory. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:46 / 62
页数:17
相关论文
共 50 条
  • [21] Learning Conditional Linear Gaussian Classifiers with Probabilistic Class Labels
    Lopez-Cruz, Pedro L.
    Bielza, Concha
    Larranaga, Pedro
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2013, 2013, 8109 : 139 - 148
  • [22] On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty
    Yang, JB
    Xu, DL
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2002, 32 (03): : 289 - 304
  • [23] Decision tree classifiers sensitive to heterogeneous costs
    Zhang, Shichao
    JOURNAL OF SYSTEMS AND SOFTWARE, 2012, 85 (04) : 771 - 779
  • [24] Abstract Interpretation of Decision Tree Ensemble Classifiers
    Ranzato, Francesco
    Zanella, Marco
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5478 - 5486
  • [25] Decision Tree based Classifiers for Large Datasets
    Franco-Arcega, Anilu
    Ariel Carrasco-Ochoa, Jesus
    Sanchez-Diaz, Guillermo
    Francisco Martinez-Trinidad, Jose
    COMPUTACION Y SISTEMAS, 2013, 17 (01): : 95 - 102
  • [26] DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION
    Vasconcellos, E. C.
    de Carvalho, R. R.
    Gal, R. R.
    LaBarbera, F. L.
    Capelato, H. V.
    Campos Velho, H. Frago
    Trevisan, M.
    Ruiz, R. S. R.
    ASTRONOMICAL JOURNAL, 2011, 141 (06):
  • [27] A Self Explanatory Review Of Decision Tree Classifiers
    Anuradha
    Gupta, Gaurav
    2014 RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2014,
  • [28] AN AUTOMATED APPROACH TO THE DESIGN OF DECISION TREE CLASSIFIERS
    ARGENTIERO, P
    CHIN, R
    BEAUDET, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1982, 4 (01) : 51 - 57
  • [29] On producing balanced fuzzy decision tree classifiers
    Crockett, Keeley
    Bandar, Zuhair
    O'Shea, James
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 1756 - +
  • [30] Decision tree classifiers for automated medical diagnosis
    Ahmad Taher Azar
    Shereen M. El-Metwally
    Neural Computing and Applications, 2013, 23 : 2387 - 2403