We review the dynamical mechanisms we have found to support the morphological features in barred-spiral galaxies based on chaotic motions of stars in their gravitational fields. These morphological features are the spiral arms, that emerge out of the ends of the bar, but also shape the bar itself. The potentials used have been estimated directly from near-infrared images of barred-spiral galaxies. In this paper, we present the results from the study of the dynamics of the potentials of the galaxies NGC 4314, NGC 1300 and NGC 3359. The main unknown parameter in our models is the pattern speed of the system Omega(p). By varying Omega(p), we have investigated several cases trying to match the results of our modeling with available photometrical and kinematical data. We found realistic models with stars on spirals in chaotic motion, while their bars are built by stars usually on regular orbits. However, we also encountered cases, where a major part of trajectories of the stars even in the bar is chaotic as well. Finally, we examined the gas dynamics of barred-spiral systems, and found that the presence of gas reinforces the intensity of the "chaotic" spiral arms.