Superintegrable quantum u(3) systems and higher rank factorizations

被引:19
|
作者
Calzada, JA [1 ]
Negro, J
del Olmo, MA
机构
[1] Univ Valladolid, Dept Matemat Aplicada, E-47011 Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor Atom & Opt, E-47005 Valladolid, Spain
关键词
D O I
10.1063/1.2191360
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of two-dimensional superintegrable systems on a constant curvature surface is considered as the natural generalization of some well known one-dimensional factorized systems. By using standard methods to find the shape-invariant intertwining operators we arrive at a so(6) dynamical algebra and its Hamiltonian hierarchies. We pay attention to those associated to certain unitary irreducible representations that can be displayed by means of three-dimensional polyhedral lattices. We also discuss the role of superpotentials in this new context. (c) 2006 American Institute of Physics.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Superintegrable systems and higher rank factorizations
    Negro, J
    Calzada, JA
    del Olmo, MA
    [J]. ADVANCED SUMMER SCHOOL IN PHYSICS 2005: FRONTIERS IN CONTEMPORARY PHYSICS, 2006, 809 : 86 - +
  • [2] Recurrence approach and higher rank cubic algebras for the N-dimensional superintegrable systems
    Hoque, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (12)
  • [3] Classical and quantum higher order superintegrable systems from coalgebra symmetry
    Riglioni, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (26)
  • [4] Quantum superintegrable Hamiltonian systems
    Calzada, JA
    Negro, J
    del Olmo, MA
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 233 - 235
  • [5] Superintegrable systems in classical and quantum mechanics
    Winternitz, P
    [J]. NEW TRENDS IN INTEGRABILITY AND PARTIAL SOLVABILITY, 2004, 132 : 281 - 297
  • [6] Quantum superintegrable systems for arbitrary spin
    Pronko, G. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13331 - 13336
  • [7] A new way to classify 2D higher order quantum superintegrable systems
    Berntson, Bjorn K.
    Marquette, Ian
    Miller, Willard, Jr.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (49)
  • [8] Dynamical symmetries for superintegrable quantum systems
    J. A. Calzada
    J. Negro
    M. A. del Olmo
    [J]. Physics of Atomic Nuclei, 2007, 70 : 496 - 504
  • [9] On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models
    Rodriguez, Miguel A.
    Tempesta, Piergiulio
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)
  • [10] Dynamical symmetries for superintegrable quantum systems
    Calzada, J. A.
    Negro, J.
    del Olmo, M. A.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 496 - 504