Computing the generalized eigenvalues of weakly symmetric tensors

被引:6
|
作者
Zhao, Na [1 ,2 ]
Yang, Qingzhi [1 ,2 ]
Liu, Yajun [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Weakly symmetric; Generalized tensor eigenpair; Gradient projection method; Armijo rule; BB iteration; PERRON-FROBENIUS THEOREM; RANK-ONE APPROXIMATION; SHIFTED POWER METHOD;
D O I
10.1007/s10589-016-9865-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Tensor is a hot topic in the past decade and eigenvalue problems of higher order tensors become more and more important in the numerical multilinear algebra. Several methods for finding the Z-eigenvalues and generalized eigenvalues of symmetric tensors have been given. However, the convergence of these methods when the tensor is not symmetric but weakly symmetric is not assured. In this paper, we give two convergent gradient projection methods for computing some generalized eigenvalues of weakly symmetric tensors. The gradient projection method with Armijo step-size rule (AGP) can be viewed as a modification of the GEAP method. The spectral gradient projection method which is born from the combination of the BB method with the gradient projection method is superior to the GEAP, AG and AGP methods. We also make comparisons among the four methods. Some competitive numerical results are reported at the end of this paper.
引用
收藏
页码:285 / 307
页数:23
相关论文
共 50 条
  • [1] Computing the generalized eigenvalues of weakly symmetric tensors
    Na Zhao
    Qingzhi Yang
    Yajun Liu
    Computational Optimization and Applications, 2017, 66 : 285 - 307
  • [2] Riemannian conjugate gradient methods for computing the extreme eigenvalues of symmetric tensors
    Ya-qiong Wen
    Wen Li
    Calcolo, 2022, 59
  • [3] Riemannian conjugate gradient methods for computing the extreme eigenvalues of symmetric tensors
    Wen, Ya-qiong
    Li, Wen
    CALCOLO, 2022, 59 (03)
  • [4] THE MULTIVARIATE EIGENVALUES OF SYMMETRIC TENSORS
    Zhou, Anwa
    Ni, Yangyang
    Fan, Jinyan
    SIAM Journal on Matrix Analysis and Applications, 2024, 45 (04) : 1954 - 1977
  • [5] AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS
    Chen, Yuting
    Cao, Mingyuan
    Yang, Yueting
    Huang, Qingdao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 358 - 374
  • [6] ALL REAL EIGENVALUES OF SYMMETRIC TENSORS
    Cui, Chun-Feng
    Dai, Yu-Hong
    Nie, Jiawang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) : 1582 - 1601
  • [7] Computing symmetric rank for symmetric tensors
    Bernardi, Alessandra
    Gimigliano, Alessandro
    Ida, Monica
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) : 34 - 53
  • [8] A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors
    Minru Bai
    Jing Zhao
    ZhangHui Zhang
    Journal of Global Optimization, 2020, 76 : 889 - 911
  • [9] A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors
    Bai, Minru
    Zhao, Jing
    Zhang, ZhangHui
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 889 - 911
  • [10] DIRAC EIGENVALUES ESTIMATES IN TERMS OF DIVERGENCEFREE SYMMETRIC TENSORS
    Kim, Eui Chul
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 949 - 966