Supervised machine learning for predicting torsades de points

被引:0
|
作者
Zhou, Yongqi [1 ]
Hua, Yanting [2 ]
Zhou, Jialu [3 ]
Wang, Jingyi [4 ]
机构
[1] Rutgers State Univ, Dept Stat, New Brunswick, NJ USA
[2] Pitzer Coll, Dept Econ, Claremont, CA 91711 USA
[3] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[4] Univ Calif Irvine, Dept Stat, Irvine, CA USA
关键词
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
MMA17
引用
收藏
页码:64 / 64
页数:1
相关论文
共 50 条
  • [22] Predicting GPA of University Students with Supervised Regression Machine Learning Models
    Falat, Lukas
    Piscova, Terezia
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [23] Predicting the adhesion strength of micropatterned surfaces using supervised machine learning
    Samri, Manar
    Thiemecke, Jonathan
    Prinz, Eva
    Dahmen, Tim
    Hensel, Rene
    Arzt, Eduard
    MATERIALS TODAY, 2022, 53 : 41 - 50
  • [24] Predicting Postoperative Cochlear Implant Performance Using Supervised Machine Learning
    Crowson, Matthew G.
    Dixon, Peter
    Mahmood, Rafid
    Lee, Jong Wook
    Shipp, David
    Le, Trung
    Lin, Vincent
    Chen, Joseph
    Chan, Timothy C. Y.
    OTOLOGY & NEUROTOLOGY, 2020, 41 (08) : E1013 - E1023
  • [25] Predicting measures of soil health using the microbiome and supervised machine learning
    Wilhelm, Roland C.
    van Es, Harold M.
    Buckley, Daniel H.
    SOIL BIOLOGY & BIOCHEMISTRY, 2022, 164
  • [26] Predicting Corona Virus Affected Patients Using Supervised Machine Learning
    David, H. Benjamin Fredrick
    Suruliandi, A.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 141 - 167
  • [27] Supervised machine learning techniques for predicting multiple damage classes in bridges
    Giglioni, Valentina
    Venanzi, Ilaria
    Ubertini, Filippo
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2023, 2023, 12486
  • [28] Predicting the Printability in Selective Laser Melting with a Supervised Machine Learning Method
    Chen, Yingyan
    Wang, Hongze
    Wu, Yi
    Wang, Haowei
    MATERIALS, 2020, 13 (22) : 1 - 12
  • [29] Predicting the Winners of Borda, Kemeny and Dodgson Elections with Supervised Machine Learning
    Kujawska, Hanna
    Slavkovik, Marija
    Ruckmann, Jan-Joachim
    MULTI-AGENT SYSTEMS AND AGREEMENT TECHNOLOGIES, EUMAS 2020, AT 2020, 2020, 12520 : 440 - 458
  • [30] PREDICTING THE FUTURE COVID-19 USING SUPERVISED MACHINE LEARNING MODELS
    Shake, Saida
    Lavanya, Ch.
    Lakshmi, S. Venkata Maha
    Bhavani, B.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 1375 - 1378