Prediction of the Hot Metal Silicon Content in the Blast Furnace

被引:0
|
作者
Beskardes, Ahmet [1 ]
Turkoglu, Soner [2 ]
Aci, Cigdem [3 ]
机构
[1] Iskenderun Demir Celik AS, Elekt Otomasyon Muldurlugu, Antakya, Turkey
[2] Cukurova Univ, Bilgisayar Muh Bolumu, Adana, Turkey
[3] Mersin Univ, Bilgisayar Muh Bolumu, Mersin, Turkey
关键词
Blast furnace; artificial neural network; multilayer perceptron; hot metal silicon content;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transforming of raw iron ore to liquid hot metal is operated at blast furnace which is one of the main unit of integrated iron and steel factories. Silicon content of liquid hot metal is the most important parameter concerning of product quality and blast furnace thermal condition. In this study a prediction model is established with artificial neural network's multilayer perceptron module by using 564 heat data of Iskenderun Iron & Steel Plant (ISDEMIR) Blast Furnace No 3. The silicon content of the next heat is predicted with accuracy of 83%.
引用
收藏
页码:709 / 712
页数:4
相关论文
共 50 条
  • [21] Deep learning for robust forecasting of hot metal silicon content in a blast furnace
    Giannetti, Cinzia
    Borghini, Eugenio
    Carr, Alex
    Raleigh, James
    Rackham, Ben
    International Journal of Advanced Manufacturing Technology, 2024,
  • [22] Dynamic Grey Model for Forecasting Silicon Content in Blast Furnace Hot Metal
    Liu, Xueyi
    Wang, Wenhui
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1900 - 1904
  • [23] The Fractal Multiscale Trend Decomposition of Silicon Content in Blast Furnace Hot Metal
    Zhou, Li
    Gao, Chuanhou
    Zeng, Jiusun
    Liu, Xiangguan
    Zhou, Gang
    Luo, Shihua
    ISIJ INTERNATIONAL, 2011, 51 (04) : 588 - 592
  • [24] Hot Metal Silicon Prediction in a Blast Furnace by Using a Deep Neural Network
    Vijay Kumar
    Subrata Chowdhury
    Aniruddha Dey
    K. P. Mrunmaya
    Naveen Singh
    Rameshwar Sah
    G. Balachandran
    Srinivas Rao
    Transactions of the Indian Institute of Metals, 2022, 75 : 2009 - 2017
  • [25] Hot Metal Silicon Prediction in a Blast Furnace by Using a Deep Neural Network
    Kumar, Vijay
    Chowdhury, Subrata
    Dey, Aniruddha
    Mrunmaya, K. P.
    Singh, Naveen
    Sah, Rameshwar
    Balachandran, G.
    Rao, Srinivas
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2022, 75 (08) : 2009 - 2017
  • [26] Fuzzy Classifier Design for Development Tendency of Hot Metal Silicon Content in Blast Furnace
    Li, Junpeng
    Hua, Changchun
    Yang, Yana
    Guan, Xinping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (03) : 1115 - 1123
  • [27] Predictive modeling of the hot metal silicon content in blast furnace based on ensemble method
    Jiang, Dewen
    Zhou, Xinfu
    Wang, Zhenyang
    Li, Kejiang
    Zhang, Jianliang
    Metallurgical Research and Technology, 2022, 119 (05):
  • [28] Identification of multi-fractal characteristics of silicon content in blast furnace hot metal
    Luo, Shi-hua
    Liu, Xiang-Guan
    Zeng, Jiu-Sun
    ISIJ INTERNATIONAL, 2007, 47 (08) : 1102 - 1107
  • [29] Predictive modeling of the hot metal silicon content in blast furnace based on ensemble method
    Jiang, Dewen
    Zhou, Xinfu
    Wang, Zhenyang
    Li, Kejiang
    Zhang, Jianliang
    METALLURGICAL RESEARCH & TECHNOLOGY, 2022, 119 (05)
  • [30] Nonlinear Modeling Method Applied to Prediction of Hot Metal Silicon in the Ironmaking Blast Furnace
    Nurkkala, Antti
    Pettersson, Frank
    Saxen, Henrik
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (15) : 9236 - 9248