PREDICTION MODELS FOR THE ESTIMATION OF SOIL MOISTURE CONTENT

被引:0
|
作者
Gorthi, Swathi [1 ]
Dou, Huifang [1 ]
机构
[1] Utah State Univ, Dept Elect Engn, Logan, UT 84322 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides a survey on different kinds of prediction models developed for the estimation of soil moisture content of an area, using empirical information including meteorological and remotely sensed data. The different models employed extend over a wide range of machine learning techniques starting from Basic Linear Regression models through models based on Bayesian framework, Decision tree learning and Recursive partitioning, to the modern non-linear statistical data modeling tools like Artificial Neural Networks. The fundamental mathematical backgrounds, pros and cons, prediction results and efficiencies of all the models are discussed.
引用
收藏
页码:945 / 953
页数:9
相关论文
共 50 条
  • [31] Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data
    Xu, Chi
    Zeng, Wenzhi
    Huang, Jiesheng
    Wu, Jingwei
    van Leeuwen, Willem J. D.
    REMOTE SENSING, 2016, 8 (01)
  • [32] Improving soil moisture prediction with deep learning and machine learning models
    Teshome, Fitsum T.
    Bayabil, Haimanote K.
    Schaffer, Bruce
    Ampatzidis, Yiannis
    Hoogenboom, Gerrit
    Computers and Electronics in Agriculture, 2024, 226
  • [33] SOIL-MOISTURE CONTENT - STATISTICAL ESTIMATION OF ITS PROBABILITY-DISTRIBUTION
    FARAGO, T
    JOURNAL OF CLIMATE AND APPLIED METEOROLOGY, 1985, 24 (04): : 371 - 376
  • [34] Estimation of Soil Moisture Content Based on Fractional Differential and Optimal Spectral Index
    Li, Wangyang
    Xiang, Youzhen
    Liu, Xiaochi
    Tang, Zijun
    Wang, Xin
    Huang, Xiangyang
    Shi, Hongzhao
    Chen, Mingjie
    Duan, Yujie
    Ma, Liaoyuan
    Wang, Shiyun
    Zhao, Yifang
    Li, Zhijun
    Zhang, Fucang
    Fu, Peng
    AGRONOMY-BASEL, 2024, 14 (01):
  • [35] Soil Moisture Content Estimation Using GNSS Reflectometry (GNSS-R)
    Malik, Jabir Shabbir
    Zhang Jingrui
    Naqvi, Najam Abbas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [36] Soil moisture estimation with RADARSAT
    Pultz, TJ
    Sokol, J
    Brisco, B
    Brown, RJ
    Gwyn, QHJ
    EARTH SURFACE REMOTE SENSING, 1997, 3222 : 143 - 148
  • [37] ESTIMATION OF SOIL MOISTURE DEFICITS
    GRINDLEY, F
    METEOROLOGICAL MAGAZINE, 1967, 96 (1137): : 97 - &
  • [38] A framework for the prediction of soil moisture
    Flores, A. N.
    Istanbulluoglu, E.
    Bras, R. L.
    Entekhabi, D.
    TRANSFORMATIONAL SCIENCE AND TECHNOLOGY FOR THE CURRENT AND FUTURE FORCE, 2006, 42 : 557 - +
  • [39] Monitoring of Soybean Soil Moisture Content Based on Hyperspectral and Machine Learning Models
    Xie, Weihao
    Zhao, Xiao
    Cui, Shihao
    Chen, Guofu
    Yang, Wanli
    Taiwan Water Conservancy, 2024, 72 (01): : 17 - 34
  • [40] Comparison of Mathematical and Neural Network Models in the Estimation of Papaya Fruit Moisture Content
    Yousefi, Alireza
    Asadi, Vahid
    Nassiri, Seyed Mehdi
    Niakousari, Mehrdad
    Aghdam, Shahla Khodabakhsh
    PHILIPPINE AGRICULTURAL SCIENTIST, 2012, 95 (03): : 246 - 251