Broadband Nanostructured Antireflection Coating for Enhancing GaAs Solar Cell Performance

被引:12
|
作者
Sarker, J. C. [1 ]
Makableh, Y. F. [1 ]
Vasan, R. [1 ]
Lee, S. [1 ]
Manasreh, M. O. [1 ]
Benamara, M. [2 ]
机构
[1] Univ Arkansas, Optoelect Res Lab, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2016年 / 6卷 / 06期
关键词
Broadband antireflection coating; power conversion efficiency enhancement; Ta2O5; sol-gel; tapered ZnO nanoneedle arrays; EFFICIENCY ENHANCEMENT; FILMS;
D O I
10.1109/JPHOTOV.2016.2604563
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A broadband antireflection scheme fabricated on a GaAs p-n junction solar cell (SC) is reported by implementing tapered ZnO nanoneedles on a planar tantalum pentoxide (Ta2O5) coating. The abrupt refractive index transition between air and GaAs is replaced by a bottom-up surface texturing approach. The antireflection structure provides a gradual reduction of refractive index away from the SC top surface. A tapering of ZnO nanoneedle tips fused with a high refractive index Ta2O5 layer contributed to a broadband suppression of reflectance less than 1% in the wavelength range of 380-900 nm. A power conversion efficiency enhancement of 50% is obtained by using the ZnO nanoneedle arrays on top of a planar Ta2O5 layer. Furthermore, a 60% enhancement in the external quantum efficiency is obtained for the same wavelength range.
引用
收藏
页码:1509 / 1514
页数:6
相关论文
共 50 条
  • [31] Expanded viewpoint for broadband antireflection coating designs
    Willey, Ronald R.
    APPLIED OPTICS, 2011, 50 (09) : C86 - C89
  • [32] Characterisation of bulk semiconductor solar cell without antireflection coating
    Huang, Yufei
    Wang, Subin
    Wang, Lingying
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [33] Silicon Quantum Dot Luminescent Solar Concentrators and Downshifters with Antireflection Coatings for Enhancing Perovskite Solar Cell Performance
    Ren, Shuzhen
    Shou, Chunhui
    Jin, Shengli
    Chen, Guo
    Han, Shanshan
    Chen, Zongqi
    Chen, Xinyu
    Yang, Songwang
    Guo, Yunlong
    Tu, Chang-Ching
    ACS PHOTONICS, 2021, 8 (08) : 2392 - 2399
  • [34] Further guidance for broadband antireflection coating design
    Willey, Ronald R.
    APPLIED OPTICS, 2011, 50 (09) : C274 - C278
  • [35] Broadband Multilayer Antireflection Coating in THz Region
    Yao, H. Y.
    Chen, Z. Y.
    Chang, T. H.
    2015 40TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2015,
  • [36] Optimal design of an antireflection coating structure for enhancing the energy-conversion efficiency of a silicon nanostructure solar cell
    Fan, Qiaoyun
    Wang, Zhiqiang
    Cui, Yanjun
    RSC ADVANCES, 2018, 8 (61) : 34793 - 34807
  • [37] Nanostructured gold films as broadband terahertz antireflection coatings
    Thoman, Andreas
    Kern, Andreas
    Helm, Hanspeter
    Walther, Markus
    PHYSICAL REVIEW B, 2008, 77 (19):
  • [38] Enhancing plasmonic silicon solar cell efficiency through integration of periodic silver nanostructured back reflector with Si3N4 top antireflection coating
    Abu-elmaaty, Basma E.
    Ismail, Tawfik
    JOURNAL OF OPTICS-INDIA, 2025,
  • [39] Electrochemically deposited ZnO nanostructured array films as antireflection coating on silicon heterojunction solar cells
    Petrov, M.
    Lovchinov, K.
    Mews, M.
    Leendertz, C.
    Dimova-Malinovska, D.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (01): : 166 - 170
  • [40] Moth Eye Antireflection Coated GaInP/GaAs/GaInNAs Solar Cell
    Aho, Arto
    Tommila, Juha
    Tukiainen, Antti
    Polojarvi, Ville
    Niemi, Tapio
    Guina, Mircea
    10TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-10), 2014, 1616 : 33 - 36