An iterative algorithm for singular value decomposition on noisy incomplete matrices

被引:0
|
作者
Cho, KyungHyun [1 ]
Reyhani, Nima [1 ]
机构
[1] Aalto Univ, Sch Sci, Dept Informat & Comp Sci, Helsinki, Finland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a simple iterative algorithm, called iSVD, for estimating the singular value decomposition (SVD) of a noisy incomplete given matrix. The iSVD relies on first order optimization over orthogonal manifolds and automatically estimates the rank of the SVD. The main goal here is to estimate the singular vectors through optimization in the right space, which is the space of the orthogonal matrix manifolds. The rank estimation is based on the ratio between estimated large singular values and the sum of all singular values. We empirically evaluate the iSVD on synthetic matrices and image reconstruction tasks. The evaluation shows that the iSVD is comparable to the recently introduced methods for matrix completion such as singular value thresholding (SVT) and fixed-point iteration with approximate SVD (FPCA).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] New efficient algorithm for singular value decomposition
    Chen, Sau-Gee
    Chang, Chin-Chi
    [J]. Proceedings - IEEE International Symposium on Circuits and Systems, 1999, 5
  • [32] Iterative Frequency Offset Estimation Based on Singular Value Decomposition
    Hasebe, Masataka
    Denno, Satoshi
    Tomisato, Shigeru
    Hata, Masaharu
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS), 2013, : 125 - 130
  • [33] Iterative refinement for singular value decomposition based on matrix multiplication
    Ogita, Takeshi
    Aishima, Kensuke
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [34] SINGULAR VALUE DECOMPOSITION APPLIED TO THE EXTRACTION OF THE POLES OF RATIONAL NOISY SIGNALS
    IBRAHIM, SAK
    [J]. REVISTA DE INFORMATICA Y AUTOMATICA, 1989, 22 (02): : 15 - 21
  • [35] A note on the hyperbolic singular value decomposition without hyperexchange matrices
    Shirokov, D. S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 391
  • [36] SINGULAR VALUE DECOMPOSITION OF DESIGN MATRICES IN ANOVA WITH BALANCED DATA
    WANSBEEK, T
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (01) : 33 - 36
  • [37] Transfer Learning With Singular Value Decomposition of Multichannel Convolution Matrices
    Yeung, Tak Shing Au
    Cheung, Ka Chun
    Ng, Michael K.
    See, Simon
    Yip, Andy
    [J]. NEURAL COMPUTATION, 2023, 35 (10) : 1678 - 1712
  • [38] Generalizations of singular value decomposition to dual-numbered matrices
    Gutin, Ran
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5107 - 5145
  • [39] ON THE SINGULAR DECOMPOSITION OF MATRICES
    Petrescu-Nita, Alina
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 255 - 262
  • [40] Necessary and sufficient conditions for the existence of a weighted singular value decomposition of matrices with singular weights
    Galba, E. F.
    Deineka, V. S.
    Sergienko, I. V.
    [J]. DOKLADY MATHEMATICS, 2014, 89 (02) : 182 - 184